ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 64 / April, 2021
Article

DOI 10.17586/0021-3454-2017-60-7-647-653

UDC 681.78, 004.932

QUALITY ASSESSMENT CRITERIA FOR IMAGE FUSION IN MULTISPECTRAL OPTICAL-ELECTRONIC SYSTEMS

A. S. Vasiliev
ITMO University ; Postgraduate


A. N. Timofeev
ITMO University, Saint Petersburg, 197101, Russian Federation; Senior Researcher, Laboratory Head


A. V. Vasilieva
ITMO University, Department of Optical-Electronic Devices and Systems; Post-Graduate Student


S. A. Ryaposov
ITMO University, Department of Optical-Electronic Devices and Systems; Student


Read the full article 

Abstract. The problems related to fusion of digital images in multispectral optical-electronic systems are considered. The presented analysis of the procedure of fusion image creation is used as a base for development of criteria of the resulting image quality evaluation with the account for spatial distortion and brightness change. To evaluate the quality of spatial transformation at image fusion, it is proposed to use such criteria as the dispersion of brightness levels difference for original image and image after spatial transformation, and the correlation coefficient for initial (without spatial distortion) and the transformed images. To assess the quality of brightness transformation in fusion image, the cross-entropy value is calculated to reduce the influence of the noise component of the image on the information quantity estimate. Another criterion is a characteristic of symmetry distribution of the fusion image Fourier spectrum – excess of Fourier spectrum – which allows to define the contrast of the image by the frequency components.
Keywords: multispectral optical-electronic system, image fusion, image quality criteria, digital image

References:
  1. Tarasov V.V., Yakushenkov Yu.G. Dvukh- i mnogodiapazonnye optiko-elektronnye sistemy s matrichnymi priemnikami izlucheniya (Two- and Multi-Band Optical-Electronic Systems with Matrix Detectors), Moscow, 2007, 192 р. (in Russ.)
  2. Vasil'ev A.S., Korotaev V.V., Krasnyashchikh A.V., Lashmanov O.Yu., Nenarokomov O.N. Journal of Instrument Engineering, 2012, no. 4(55), рp. 12–16. (in Russ.)
  3. Vasil'ev A.S., Krasnyashchikh A.V., Korotaev V.V., Lashmanov O.Yu., Nenarokomov O.N., Lysenko D.Yu., Shirokov A.S., Yaryshev S.N. Journal of Instrument Engineering, 2012, no. 12(55), рp. 50–56. (in Russ.)
  4. Antyufeev V.I., Bykov V.N. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2008, no. 1, рp. 70–78. (in Russ.)
  5. Voytov V.A., Golitsyn A.B., Degtyarev E.V., Zhuravlev P.V., Zhurov G.E., Shlishevskiy V.B. JournalofOpticalTechnology,2009, no. (1276), рp. 84–87. (in Russ.)
  6. Aksenov O.Yu. Digital Signal Processing, 2005, no. 3, рp. 51–55. (in Russ.)
  7. Vasilev A.S., Korotaev V.V.Proc. of SPIE, 2015, no. 9530, рp. 953007–1.
  8. Porfir'ev L.F. Osnovy teorii preobrazovaniya signalov v optiko-elektronnykh sistemakh (Fundamentals of the Theory of Signal Processing in Opto-Electronic Systems), St. Petersburg, 2013, 400 р. (in Russ.)
  9. Jianfang Dou, Jianxun Li. Opt. Engineering, 2012, no. 10(51), рp. 107006.
  10. Gonzalez R.C., Woods R.E. Digital Image Processing, Prentice Hall, 2008, 954 р.
  11. Al-Wassai F., Kalyankar N., Al-zuky A. J. of Global Research in Computer Science, 2011, no. 5(2), рp. 70–77.
  12. Ramac L.C., Uner M.K., Varshney P.K. Proc. of SPIE, 1998, no. 3376.
  13. Deepali A. Godse, Dattatraya S. Bormane. Intern. Journal of Engineering Science and Technology, 2011, no. 7(3).
  14. Kim H.B., Kossov P.V., Mikheev C.M. Vestnik komp'iuternykh i informatsionnykh tekhnologii (Herald of computer and information technologies), 2011, no. 10. (in Russ.)
  15. Prokhorov Yu.V., ed., Veroyatnost' i matematicheskaya statistika: Entsiklopediya (Probability and Mathematical Statistics: Encyclopedia), Moscow, 2003, 912 р. (in Russ.)