ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 64 / April, 2021

DOI 10.17586/0021-3454-2017-60-8-770-780

UDC 629.7.054


I. V. Fominov
A. F. Mozhaysky Military Space Academy, Department of Autonomous Control Systems, St. Petersburg;

A. N. Maletin
A. F. Mozhaysky Military Space Academy, Department of Autonomous Control Systems, St. Petersburg; Advanced Student

A. I. Klychnikov
1st State Test Spaceport, Mirny; Senior Engineer-Tester; A. F. Mozhaysky Military Space Academy; Applicant

Read the full article 

Abstract. The actual task of testing metrological characteristics of measuring devices incorporated into spacecraft control system during orbital flight is considered. The task is performed on the example of a pendulum accelerometer of the compensation type. Test actions on the feedback circuit of the accelerometer are developed, the transient characteristic of the corresponding response signals of the accelerometer are analyzed. The developed method of autonomous indirect identification of the conversion factor of pendulous compensating accelerometer is based on an iterative procedure of refinement of the reference model, and is characterized by the use of analytical expressions for the transition process under test actions. Numerical results are presented to confirm that the proposed method allows for highly accurate determination of the changing conversion factor for compensating accelerometer in conditions of orbital flight by built-in hardware and software means.
Keywords: pendulum compensating accelerometer, conversion factor, transient response, standard model, test actions, accuracy

  1. Fominov I.V. Vestnik of the Samara State Aerospace University, 2015, no. 1(14), pp. 83–91. (in Russ.)
  2. Golyakov A.D., Fominov I.V.Navigation and Hydrography, 2014, no. 37, pp. 28–35. (in Russ.)
  3. Dmitriev S.P., Kolesov N.V., Osipov A.V. Informatsionnaya nadezhnost', kontrol' i diagnostika informatsionnykh sistem (Information Reliability, Control and Diagnostics of Information Systems), St. Petersburg, 2003. (in Russ.)
  4. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial'nykh navigatsionnykh sistem (Fundamentals of Strapdown Inertial Navigation Systems), St. Petersburg, 2009, 280 р. (in Russ.)
  5. Stel'mashchuk S.V. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2015, no. 6(326), pp. 103–113. (in Russ.)
  6. Pronin A.N., Sapozhnikova K.V., Taymanov R.E. Upravlenie v morskikh i aerokosmicheskikh sistemakh, UMAS-2014 (Management in Sea and Space Systems, UMAS-2014), Proceedings of the Conference, St. Petersburg, 2014, рр. 23–28. (in Russ.)
  7. Lachin V.I., Plotnikov D.A. Izvestiya SFedU. Engineering Sciences, 2012, no. 3, pp. 241–251. (in Russ.)
  8. Zaytsev A.V., Kanushkin S.V., Nikishov A.N., Semenov A.V. Trudy MAI, 2011, no. 47, (in Russ.)
  9. Nikishov A.N., Zimarin A.M. Instruments and Systems: Monitoring, Control, and Diagnostics, 2011, no. 6, pp. 5–8. (in Russ.)
  10. Gargaev A.N., Kashirskikh V.G. Vestnik of Kuzbass State Technical University, 2013, no. 1, pp. 131–134. (in Russ.)
  11. Fominov I.V. Vestnik of the Samara State Aerospace University, 2014, no. 4, pp. 45–51. (in Russ.)
  12. Mironov V.I., Fominov I.V., Maletin A.N. Trudy SPIIRAN (SPIIRAS Proceedings), 2015, no. 3(40), pp. 93–109. (in Russ.)
  13. Dmitriev A.K., Yusupov R.M. Identifikatsiya i tekhnicheskaya diagnostika (Identification and Technical Diagnostics),Moscow, 1987, 521 р. (in Russ.)
  14. Diligenskaya A.N. Identifikatsiya ob"ektov upravleniya (Identification of Control Objects), Samara, 2009, 136 р. (in Russ.)
  15. Raspopov V.Ya. Mikromekhanicheskie pribory (Micromechanical Devices), Moscow, 2007,400 р. (in Russ.)
  16. Nazarov B.I. еt al. Komandno-izmeritel'nye pribory (Command and Measuring Devices), Moscow, 1987, 639 р. (in Russ.)