ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2017-60-9-882-890

UDC 62-506

CONTROL OF TECHNICAL SYSTEMS WITH DELAY USING STANDARD REGULATORS WITH DISTURBANCE COMPENSATION

O. A. Remizova
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry;


V. V. Syrokvashin
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry; Cand. Techn. Sci.


A. L. Fokin
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry; Professor


I. V. Gogol
; St. Petersburg State Technological Institute, Department of Processes Automation in Chemical Industry; Post-Graduate Student


Read the full article 

Abstract. For an object with delay, a new structural schematic of system of robust control with compensation of slowly changing perturbation at the object output is proposed. The object transfer functions are supposed to be stable or related to the boundary of aperiodic stability. To ensure the system robustness, predictor in the control loop is replaced by a nominal servo system in which a signal for disturbance compensation is generated. The proposed approach is reported to allow for realization of a rough system in relation to the uncertainty in the delay magnitude and parametric uncertainty of the transfer function. Construction of robust regulators in the traditional class of control laws is analyzed. The necessity of roughness of the main control loop is demonstrated.
Keywords: compensation of disturbances, robust control, delay in control, transfer function, nominal system, system accuracy, steady-state mode, servo system, predictor

References:
  1. Remizova O.V., Fokin A.L.Journal of Instrument Engineering, 2016, no. 12(59), рр.1010–1017. (in Russ.)
  2. Denisenko V.V. Automation in Industry, 2007, no. 6, рр. 45–50. (in Russ.)
  3. Tsykunov A.M. Robastnoe upravlenie s kompensatsiey vozmushcheniy (Robust Control with Disturbance Compensation), Moscow, 2012, 300 p. (in Russ.)
  4. Bobtsov A.A.Automation and Remote Control, 2002, no. 11, рр. 108–117. (in Russ.)
  5. Yao J.Y., Jiao Z.X., Ma D.W. IEEE Transact. in Industrial Electronics, 2014, no. 7(61), рр. 3630–3637.
  6. Wan Y., Zhao J., Dimirovski G.M. Control Engineering Practice, 2014, no. 30, рр.132–139.
  7. Chen M., Ge S.S., How B.V.E. Choo Y.S. IEEE Transact. on Control System Technologies, 2013, no. 2(21), рр. 395–409.
  8. Bobtsov A.A., Kolyubin S.A., Pyrkin A.A.Automation and Remote Control, 2010, no. 11, рр. 136–148. (in Russ.)
  9. Pyrkin A.A. Automation and Remote Control, 2010, no. 8, рр. 62–78. (in Russ.)
  10. Pyrkin A., Smyshlyaev A., Bekiaris-Liberis N., Krstic M.Amer. Control Conf.,Baltimore, USA, 2010.
  11. Pyrkin A.A., Bobtsov A.A., Kolyubin S.A.Automation and Remote Control, 2015, no. 1, рр.21–30. (in Russ.)
  12. Egupov N.D., ed., Metody robastnogo, neyro-nechetkogo i adaptivnogo upravleniya (Methods of robust, neuro-fuzzy and adaptive control), Moscow, 2002, 744 р. (in Russ.)
  13. Furtat I.B., Tupichin E.A. Journal of Instrument Engineering, 2015, no. 9 (58), рр.707–712. (in Russ.)
  14. Grigor'ev V.V., Boykov V.I., Bystrov S.V., Ryabov A.I., Mansurova O.K. Journal of Instrument Engineering, 2013, no. 4(43), рр.15–20. (in Russ.)
  15. Fokin A.L. Bulletin of the Saint Petersburg State Institute of Technology (Technical University), 2014, no. 27, рр. 101–106. (in Russ.)
  16. Remizova O.V., Syrokvashin V.V., Fokin A.L. Journal of Instrument Engineering, 2015, no. 12(58), рр. 966–972. (in Russ.)