DOI 10.17586/0021-3454-2018-61-5-414-422
UDC 629.78
INCREASING THE TARGET EFFICIENCY OF INFORMATION SUPPORT NANOSATELLITES
TSNIImash; Chief Scientist
Read the full article
Abstract. The problem of improvement of target efficiency of small-size space vehicles (nanosatellites) for informational support (observation and data transmission) is studied. Considered ways to increase the target efficiency include an increase in the spatial resolution of optical equipment, an increase in the power capabilities of airborne systems, an increase in noise immunity of the communication channels "onboard-Earth" and "board-board," compensation for the instability of ballistic clustering of nanosatellites such as a "distributed space vehicle" ensuring the stability of nanosatellites to failures. Implementation of the proposed approaches to the problem of increasing target efficiency of nanosatellites is anticipated to allow, to some extent, to compensate for the shortcomings of small-size spacecraft due to low mass, dimensions, available electrical power and low reliability.
Keywords: nanosatellite, optical equipment, image processing, energy, noise tolerance
References:
References:
- Payson D.B. Communication Technologies & Equipment, 2016, no. 6, pp. 64–69 (in Russ.)
- Milanich A.I., Baranov A.A. Proceedings of MIPT, 2012, no. 2(4), pp. 177–181. (in Russ.)
- Ivanov N.M., Lysenko L.N. Ballistika i navigatsiya kosmicheskikh apparatov (Ballistics and Navigation of Spacecraft), Moscow, 2004, 544 p. (in Russ.)
- McHarg M.G., Smith B.A., Russell T.H., Asmolova O., Quiller T.S., Balthazor R.L., Dearborn M.E., Isch B.M., Johnson T.R., MacDonald A.J., Peek E.W. 28th Annual AIAA/USU. Conference on Small Satellites (SSC14), 2014,рp. 1–4.
- Salmin V.V. et al. Informatsionnye tekhnologii i nanotekhnologii, ITNT-2016 (Information technology and nanotechnology, ITNT-2016), Proceedings of the International conference and young scientists school, SSAU, Samara, 17–19 May 2016, рр. 675–682. (inRuss.)
- Burachek V.G., Zatserkovnyy V.I., Belenok V.Yu. Chernіgіvs'kiy naukoviy chasopis. Serіya 2, Tekhnіka і priroda, 2011, no. 2(2), pp. 9–19. (inRuss.)
- Eleftheriades G.V. and Balmain K. Negative-Refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE Press, 2005, 400 p.
- Fizika kosmosa: Malen'kaya entsiklopediya(Physics of Space: Small Encyclopedia), Moscow, 1986, 783 р. (in Russ.)
- Klyushnikov V.Yu. Journal of Instrument Engineering, 2016, no. 6(59), pp. 423–428.(in Russ.)
- Taboldiev D.D., Ashirbekov B.T. Vestnik of KazNRTU, 2016, no. 5, pp. 380–384. (in Russ.)
- Akul'shin Yu.D., Lur'e M.S., Pyatyshev E.N., Glukhovskoy A.V., Kazakin A.N. St. Petersburg State Polytechnical University Journal, 2014, no. 5(205), pp. 35–42. (in Russ.)
- Novikov S.G. et al. Radioelektronnaya tekhnika, 2015, no. 2(8), pp. 43–50. (in Russ.)
- Morelos-Zaragoza R.H. The Art of Error Correcting Coding, John Wiley & Sons, 2006.
- Kukushkin S.S., Nesterovskiy I.S. Dvoynye tekhnologii, 2011, no. 3(56), pp. 40–47. (inRuss.)
- Avariaskin D.P., Shcherbakov M.S. et al. Aktual'nye problemy raketno-kosmicheskoy tekhniki. IV Kozlovskie chteniya (Current Problems of the Missile and Space Equipment. IV Kozlov Readings), Proceedings of the IV All-Russian Scientific and Technical Conference, Samara, 14–18 September 2015. рр. 406–410 (in Russ.)
- Moore E., Shannon C. Journal of the Franlin Institute, 1956, no. 3, рр. 191; no. 4, pp. 281.
- Akhmetov R.N., Makarov V.P., Sollogub A.V. Ontology of Designing, 2012, no. 4, pp. 7–17. (in Russ.)
- Savkin L.V. Proceedings in Cybernetics, 2015, no. 2(18), pp. 3–32. (in Russ.)
- Chumakov D.M. Trudy MAI, no. 78, http://www.mai.ru/science/trudy/. (in Russ.)