ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2018-61-5-423-429

UDC 629.78

NEW CUBESAT ARCHITECTURE WITHOUT ONBOARD CABLE NETWORK

E. V. Ustyugov
SSAU, Department of Space Exploration;;


S. V. Shafran
Samara National Research University; junior researcher


A. A. Sobolev
SSAU, Department of Space Exploration;; Undergraduate Student


Read the full article 

Abstract. A new CubeSat architecture is proposed, which makes it possible to increase the efficiency of nanosatellite manufacturing, assembling, and testing. The proposed architecture makes it possible to simplify the development process and simplify significantly the nanosatellite assembling process. The onboard cable network in the nanosatellite is completely, or almost completely, eliminated, which guarantees the correct assembly at the design stage. The problems of testing of nanosatellites manufactured in the proposed architecture are considered. An example of a universal tool for carrying out a wide range of functional tests for individual onboard systems, assemblies process and nanosatellite preparation on the launch complex is presented. Possibilities for improving the pre-launch preparation of the nanosatellites, including through automated monitoring of all connections, are considered.
Keywords: nanosatellite, onboard cable network, design method, nanosatellite layout scheme, onboard subsystem, nanosatellite architecture, CubeSat

References:
  1. Ustyugov E.V., Shafran S.V., Sobolev A.A., Davydov D.D. Journal of Instrument Engineering, 2016, no. 6(59), pp.459–465.(in Russ.)
  2. Belokonov I.V., Gusev S.I., Taganov A.I. Vestnik of Ryazan State Radio Engineering University, 2015, no. 52, pp. 179–182. (in Russ.)
  3. Goryacheva E.P., Kuyshibaev T.Z., Proshin A.A. NOVAINFO.RU, 2015, no. 36(1), pp.51–55.(in Russ.)
  4. Klyushnikov V.Yu., Klement'ev S.A. Innovatics and Expert Examination, 2016, no. 2(16), pp. 97–105. (in Russ.)
  5. Stepanov A.V. Bulletin of Scientific Conferences, 2017, no. 5–4, pp. 115–117.(in Russ.)
  6. Сubesat design specification, https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf.
  7. Gonzalez-Llorente J., Rodriguez-Duarte D., Sanchez-Sanjuan S., Rambal-Vecino A. AERO 2015, IEEE Aerospace Conference Proceedings, June, 2015, art. no. 7119122.
  8. Kirillin A.N., Belokonov I.V., Timbai I.A., Kramlikh A.V., Melnik A., Ustiugov E.V., Egorov A., Shafran S.V. Procedia Engineering, 2015, no. 104, pp. 97–106, DOI: 1016/j.proeng.2015.04.101.
  9. Vannitsen J., Rizzitelli F., Wang K., Segret B., Juang J.-C., Miau J.-J. Journal of Astrophysics and Astronomy, 2017, no. 4(38). DOI: 10.1007/s12036-017-9485-2.
  10. Hanafi A., Karim M., Latachi I., Rachidi T., Dahbi S., Zouggar S. Proceedings of the Third International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 22–24 May 2017, Morocco. DOI: 10.1109/ATSIP.2017.8075514. 2017.
  11. Ustiugov E.V., Shakhmatov E.V., Belokonov I.A., Timbai I.A., Nikitin A., Shafran S.V. PROCEDIA ENGINEERING, 2015, no. 104, pp. 139–146. DOI: 10.1016/j.proeng.2015.04.105.
  12. Сonnectors, https://www.samtec.com/connectors.
  13. Ustiugov E.V. Information and Space, 2017, no. 2, pp. 168–178. (inRuss.)