ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2018-61-10-915-921

UDC 546.28.004

RESEARCH OF SILICON SURFACE ETCHED IN POTASSIUM HYDROXIDE SOLUTION

V. E. Pautkin
JSC Research Institute of Physical Measurements; Chief Specialist


F. A. Abdullin
JSC Research Institute of Physical Measurements; Design Engineer


I. R. Vergazov
JSC Research Institute of Physical Measurements; Chief Specialist


A. E. Mishanin
JSC Research Institute of Physical Measurements; Leading Process Engineer


Read the full article 

Abstract. The influence of the depth of anisotropic etching of silicon in KOH solution on the surface roughness is studied experimentally. Wire etching of silicon wafers at various depths was followed by measurement of roughness parameters with the PF-60 optical profilograph. It is shown that such parameters of surface roughness as Ra, Rz, Rmax vary with the depth. To improve the surface quality and reduce the above parameters, chemical polishing in an isotropic etchant was used. It is argued that the studies carried out have practical significance for the manufacture of silicon structures of micromechanical systems. 
Keywords: micromechanical sensors, anisotropic etching, surface roughness, chemical polishing, hydromechanical conditions

References:
  1. Petersen K.E. Proceedings of the IEEE, 1982, no. 5(70), pp. 420–457.
  2. Avanesov G.A., Bessonov R.V., Forsh A.A., Kudelin M.I. Journal of Instrument Engineering, 2015, no. 1(58), pp. 3–13. (in Russ.)
  3. Afinogenov I.A., Kon’kin A.V., Enns P.B., Kapustin A.N. Journal of Instrument Engineering, 2011, no. 4(54), pp. 18–23. (in Russ.)
  4. Sokolov L.V., Parfenov N.M. Nano- and Microsystems Technology, 2011, no. 11, pp. 19–26. (in Russ.)
  5. Averin I.A., Pautkin V.E. University proceedings. Volga region. Technical sciences, 2014, no. 2(30), pp. 24–32. (in Russ.)
  6. Han Lu, Hua Zhang, Mingliang Jin, Tao He, Guofu Zhou, and Lingling Shui, Micromachines, 2016, no. 7, pp. 19. DOI:10.3390/mi7020019
  7. Patent RU 2207658, H01L 21/02, H01L 29, Sposob izgotovleniya mikromekhanicheskogo inertsial’nogo chuvstvitel’nogo elementa emkostnogo tipa (Way of Production of a Micromechanical Inertial Sensitive Element of Capacitor Type), E.A. Mokrov, Yu.A. Zelentsov, S.A. Kozin, I.G. Akimov, A.V. Fedulov, T.G. Chistyakova, Yu.S. Anufriyev, Patent application no. 2001119005/28, Priority 09.07.2001, Published 27.06.2003. (in Russ.)
  8. Tripathi C.C. et al. Indian Journal of Pure & Applied Physics, 2008, no. 46, October, pp. 738–743.
  9. Cianci E. et al. Micromachining and Microfabrication Process Technology VII, Proceedings of SPIE, 2001, no. 4557, pp. 201–209.
  10. Patent RU 2526789, G01P15/08, G01P15/125, Chuvstvitel’nyy element integral’nogo akselerometra (Sensitive Element of the Integrated Accelerometer), V.E. Pautkin, S.V. Prilutskaya, Patent application no. 2013110978/28, Priority 12.03.2013, Published 27.08.2014, Bulletin 24. (in Russ.)
  11. Wei Xu, Jie Yang, Guofen Xie, Bin Wang, Mingshan Qu, Xuguang Wang, Xianxue Liu, and Bin Tang, Micromachines, 2017, no. 8, pp. 77. DOI:10.3390/mi8030077
  12. Zhu Li, Wen Jie Wu, Pan Pan Zheng, Jin Quan Liu, Ji Fan, and Liang Cheng Tu, Micromachines, 2016, no. 7, pp. 167. DOI:10.3390/mi7090167
  13. Fedorenko V.A., Shoshin A.I. Spravochnik po mashinostroitel’nomu chercheniyu (Handbook of Engineering Drawing), Leningrad, 1981, 416 р. (in Russ.)
  14. Gotra Z.Yu. Tekhnologiya mikroelektronnykh ustroystv (Technology of Microelectronic Devices), Moscow, 1991, 528 р. (in Russ.)
  15. Monteiro T.S., Kastytis P., Goncalves L.M., Minas G., and Cardoso S. Micromachines, 2015, no. 6, pp. 1534–1545. DOI:10.3390/mi6101437
  16. Campbell S.A., Cooper K., Dixon L., Earwaker R., Port S.N., and Schiffrin D.J. Journal of Micromechanics and Microengineering, 1995, no. 3(5). DOI:10.1088/0960-1317/5/3/002
  17. Bressers P.M.M.C., Kelly J.J., Gardeniers J.C.E., Elwenspoek M. J. Electrochem. Soc., 1996, no. 5(143), pp. 1744–1750.