ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2018-61-12-1083-1091

UDC 544.032.65

TITANIUM SURFACE ABLATION BY DOUBLE NANOSECOND PULSES

M. V. Lukiantcev
ITMO University;


A. A. Samokhvalov
ITMO University, Saint Petersburg, 197101, Russian Federatio; Assistant


Abstract. The effect of double nanosecond laser pulses on the titanium surface and the changes in the morphology of ablative catheters caused by them are studied. The considered mode of dual nanosecond pulses allows more efficient use of laser energy for the problems of microrelief formation in comparison with the mode of mono-pulse action due to the separation of the "excess" power density by the time delay exceeding the lifetime of the laser plasma. It is shown that the variation of the time parameters of the double pulses leads to an increase in the depth of the removed layer by about 1.5 times, a twofold increase in the aspect ratio, as well as a decrease in the amount of the liquid phase of the material emitted by the recoil pressure. A complex two-level microstructure of craters is found to be formed in the mode of dual nanosecond pulses. The obtained crater structures in the mode of double nanosecond pulses can be used to change the tribological properties of the metal surface and to create functional micro-reliefs.
Keywords: laser ablation, double nanosecond pulses, ablation crater, micro-structuring, functional microrelief, ytterbium fiber laser

References:
  1. Zervas M.N., Codemard C.A. IEEE J. Sel. Top. Quantum Electron, 2014, no. 5(20), pp. 219–241.
  2. Veyko V.P. Lazernaya mikroobrabotka (Laser Microprocessing), St. Petersburg, 2007, 111 р. (in Russ.)
  3. Abdel-Aal H.A. Surface Topography: Metrology and Properties, 2016, no. 4(4), pp. 043001.
  4. Ready J.F., Farson D.F., ed., LIA handbook of laser materials processing, Orlando, Laser Institute of America, 2001, Chaps 12 and 13.
  5. Knowles M.R.H. et al. The International Journal of Advanced Manufacturing Technology, 2007, no. 1-2(33), pp. 95–102.
  6. Veyko V.P., Samokhvalov A.A. Journal of Instrument Engineering, 2013, no. 3(56), pp. 86–92. (in Russ.)
  7. Hendow S.T. et al. Optics Express, 2011, no. 11(19), pp. 10221–10231.
  8. Campbell B.R., Lehecka T.M., Thomas J., Semak V. Proc. Intern. Cong. Appl. Lasers Electro-Opt., 2008, p. 401.
  9. Wang X.D. et al. Optics & Laser Technology, 2009, no. 2(41), pp. 148–153.
  10. Petter L., Noll R. Appl. Phys. B, 2007, no. 86, pp. 159–167.
  11. Forsman A.C., Banks P.S. Journal of applied physics, 2005, no. 1(98), pp. 033302.
  12. Cristoforetti G. et al. Applied Physics A, 2010, no. 1(98), pp. 219.
  13. Cristoforetti G. et al. Journal of Physics D: Applied Physics, 2009, no. 22(42), pp. 225207.
  14. Choi I. et al. Applied Physics A, 2013, no. 4(110), pp. 785–792.
  15. Diwakar P.K. et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, no. 87, pp. 65–73.
  16. Tognoni E., Cristoforetti G. Journal of Analytical Atomic Spectrometry, 2014, no. 8(29), pp. 1318–1338.
  17. Veiko V.P., Lednev V.N., Pershin S.M., Samokhvalov A.A., Yakovlev E.B., Zhitenev I.Yu., Kliushin A.N. Review of Scientific Instruments, 2016, no. 6(87), pp. 063114.
  18. Vu K.T., Malinowski A., Richardson D.J., Ghiringhelli F., Hickey L.M.B., Zervas M.N. Opt. Express, 2006, no. 14(23), pp. 10996–11001.
  19. Wang X. et al. Applied Physics A, 2017, no. 1(123), pp. 51.
  20. Amponsah-Manager K., Omenetto N., Smith B.W., Gornushkin I.B., Winefordner J.D. Jaas: journal of analytical atomic spectrometry, 2005, no. 20, pp. 544–551. DOI: 10.1039/b419109a
  21. Pangovski K. et al. IEEE Journal of Selected Topics in Quantum Electronics, 2014, no. 5(20), pp. 51–63.
  22. Anisimov S.I., Luk'yanchuk B.S PHYSICS-USPEKHI, 2002, no. 3 (45), pp. 293–324.