ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 64 / April, 2021

DOI 10.17586/0021-3454-2019-62-1-56-68

UDC 539.1.05


A. V. Vasilieva
ITMO University, Department of Optical-Electronic Devices and Systems; Post-Graduate Student

V. A. Ryzhova
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor

A. S. Vasiliev
ITMO University ; Postgraduate

Read the full article 

Abstract. Theoretical aspects of gamma image formation based on the scintillation method with the use of solid-state silicon photoelectron multiplier and coding aperture are considered. The physical processes occurring in the scintillator under the action of ionizing radiation and leading to generation of visible radiation are discussed. The effective cross sections of the photoelectric effect, Compton scattering, and electron-positron pair generation are calculated depending on the gamma-quantum energy. Parameters of several scintillation crystals with different physical properties and gamma-ray attenuation efficiency are presented. Principle of operation of the coding aperture intended for formation of gamma image is considered, and ways of realization of its various configurations are described. A block diagram of a gamma-radiation visualization system providing high visibility and efficiency of gamma sources monitoring is proposed.
Keywords: gamma-visualization, SiPMT, scintillator, gamma-ray absorption, coding aperture

  1. Sánchez F., Benlloch J.M., Escat B., Pavón N., Porras E., Kadi-Hanifi D., Ruiz J.A., Mora F.J., Sebastià A. Medical physics, 2004, no. 6(31), pp. 1384–1397.
  2. Patent RU 2426151, Malogabaritnoye ustroystvo dlya vizualizatsii istochnikov gamma-izlucheniya (The Small-Sized Device for Visualization of Sources of Gamma Radiation), Lapin O.E., Vlasenko A.N., Demchenkov V.P., Pervishko A.F. Priority 10.08.2011. (in Russ.)
  3. CANBERRA. Cartogam Real-Time Portable Gamma-Ray Imaging System,
  4. Okada K., Tadokoro T., Ueno Y., Nukaga J., Ishitsu T., Takahashi I. Prog. Nucl. Sci. Tech., 2014, no. 4, pp. 14–17.
  5. Polaris-H Imaging Spectrometer for Nuclear Power Plants,
  6. Martynyuk Yu.N., Vishnevskiy I.B. ANRI, 2016, no. 4, pp. 13–23.
  7. Park H.M., Joo K.S. Sensors, 2016, no. 6(16), pp. 919.
  8. Becker E.M., Farsoni A.T. Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, no. 761, pp. 99–104.
  9. Rodnyi P.A. Physical Processes in Inorganic Scintillators, NY, CRC Press, 1997, 240 p.
  10. Vasil’yev A.N., Mikhaylin V.V. Vvedeniye v spektroskopiyu dielektrikov. Chast’ II. Vtorichnyye protsessy (Introduction to Spectroscopy of Dielectrics. Part II. Secondary Processes), Moscow, 2010, 238 р. (in Russ.)
  11. Leo W.R. Techniques for nuclear and particle physics experiments: a how-to approach, Springer Science & Business Media, 2012, 382 p.
  12. Shendrik R.Yu. Metody eksperimental’noy fiziki kondensirovannogo sostoyaniya. Chast’ 3. Vvedeniye v fiziku stsintillyatorov (Methods of Experimental Physics of the Condensed State. Part 3. Introduction to Physics of Scintillators), Irkutsk, 2013, 110 р. (in Russ.)
  13. Klein O., Nishina Y. Zeitschrift für Physik, 1929, no. 11–12(52), pp. 853–868.
  14. Saint-Gobain Crystals. Crystal Scintillation Materials,
  15. Shirokov Yu.M., Yudin N.P. Yadernaya fizika (Nuclear Physics), Moscow, 1980, 728 р. (in Russ.)
  16. Grechukhin D.P. Gamma-izlucheniye. Fizicheskaya entsiklopediya (Gamma Radiation in Physical Encyclopedia), Moscow, 1988–1999, ISBN 5-85270-034-7. (in Russ.)
  17. Gottesman S.R., Fenimore E.E. Applied optics, 1989, no. 20(28), pp. 4344–4352. 18. Finger M.H., Prince T.A. International Cosmic Ray Conference, 1985, vol. 3.