ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

Development of Energy-Efficient Galloping Robots with Variable-Length Links

I. I. Borisov
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


S. A. Kolyubin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


R. A. Zashchitin
ITMO University, Faculty of Control Systems and Robotics; Engineer;


S. Stramigioli
University of Twente, Department of Electrical Engineering, Mathematics and Computer Science;


Read the full article 

Abstract. An algorithm for structural-parametric synthesis of leg mechanisms of galloping robots that can move in an uncertain environment with external dynamic contact interactions and the use of relatively simple position and speed controllers is presented. Dynamic locomotion of galloping robots, whose leg mechanisms mimic the musculoskeletal system of animals, is provided by a variable-length link with passive regulation. The variable-length link, which is a connection of two solid-state links by means of a spring-loaded prismatic kinematic pair, is introduced into the resonance state to ensure energy-efficient dynamic locomotion, energy recovery when colliding with the floor, and leveling of the underlying surface irregularities.
Keywords: synthesis of mechanisms, galloping robots, walking robots, energy efficiency, biomimetics

References:

 

1. Kim S. et al. Foundations and Trends in Robotics, 2017, no. 2(5), pp. 117–190.

2. Seok S. et al. IEEE/asme transactions on mechatronics, 2014, no. 3(20), pp. 1117–1129.

3. Folkertsma G.A. Energy-based and biomimetic robotics, University of Twente, 2017.

4. Haberland M. et al. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, рр. 3957–3962.

5. Bhounsule P. et al. Adaptive Mobile Robotics, World Scientific, 2012, рр. 441–448.

6. Bledt G. et al. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, рр. 2245–2252.

7. Semini C. et al. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2008, рр. 593–599.

8. Weinmeister K. et al. IEEE International Symposium on Safety, Security, And Rescue Robotics (SSRR), 2015, рр. 1–6.

9. Artobolevskiy I.I. Mekhanizmy v sovremennoy tekhnike. Tom I Rychazhnyye mekhanizmy (Mechanisms in Modern Technology. Vol. I. Linkage), Moscow, 1979, 608 р. (in Russ.)

10. Duindam V., Stramigioli S. Modeling and Control for Efficient bipedal Walking Robots, Springer, 2009, Ser. vol. 53, 214 р.

11. Tedrake R. et al. IEEE International Conference on Robotics and Automation, 2004, vol. 5,
рр. 4656–4661.

12. McGeer T. Proceedings of the Royal Society of London. B. Biological Sciences, 1990, no. 1297(240), pp. 107–134.

13. Hurst J.W., Chestnutt J.E. IEEE Transactions on Robotics, 2010, no. 4(26), pp., N. P. 597––606.

14. Hutter M. et al. Adaptive Mobile Robotics – Proc. 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2012, рр. 483–490.

15. Borisov I.I. et al. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, рр. 1696–1701.

16. Borisov I.I., Monich D.S., Kolyubin S.А. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, no. 5(19), pp. 832–839. (in Russ.)