DOI 10.17586/0021-3454-2020-63-5-460-466
UDC 620.178.1
Investigation of Surface Pro¬perties of Alloys Using Indentation Instruments
St. Petersburg Polytechnic University, Higher School of Mechanical Engineering; Institute of Mechanical Engineering, Materials and Transport;
A. A. Popov
Peter the Great St. Petersburg Polytechnic University, Institute of Machinery, Materials and Transport;
G. V. Ivanova
Peter the Great St. Petersburg Polytechnic University, Institute of Machinery, Materials and Transport; Senior Lecturer;
G. V. Tsvetkova
St. Petersburg Polytechnic University, Higher School of Engineering;
Read the full article
Abstract. Using indentation instruments, the features of elastoplastic deformation of samples made of alloys are investigated. The alloys of aluminum AMc, titanium VT23, and steels 45, HVG with FCC, HCP and BCC lattices, respectively, are studied. It is shown that when indentation depth increases, instrumental hardness (H1T), elastic modulus (Е1T), and their ratios (НIT / EIT) tend to the values of classical microhardness Нµ, Young's modulus E, and their ratio (Нµ/E). The nature of localization of plastic deformation of alloys near the surface of the indenter is analyzed. The reason for the hard workability of titanium-based alloys is determined.
Keywords: alloys of titanium, aluminum, and steel, indentation, elastic and plastic deformation
References:
References:
- Komanduri R. Wear, 1981, vol. 69, рр. 179–188.
- Epshteyn Zh.N. Vysokoskorostnaya deformatsiya i struktura metallov (High-Speed Deformation and Metal Structure), Moscow, 1971, 197 p. (in Russ.)
- Flom D.G., Komanduri R., Lee M. Ann. Rev. Mater. Sci., 1994, рр. 231–278.
- Ivanov E.K., Skotnikova M.A., Krylov N.A. Nauchno-tekhnicheskiye vedomosti SPbGPU. Nauka i obrazovaniye, 2012, no. 1, pp. 41–52. (in Russ.)
-
Skotnikova M.A., Kastorskiy D.A., Strokina T.I. Inorganic Materials: Applied Research, 2002, no. 1,
pp. 199–215. (in Russ.) - Skotnikova M.A., Vinogradov V.V., Krylov N.A. Metalloobrabotka, 2005, no. 4(11), pp. 12–17. (in Russ.)
- Oliver W.C., Pharr G.M. J. Mater. Res., 1992, vol. 7, рр. 1564–1583.
- Mencík J. Mechanica. ASM International, 2006, vol. 42, рр. 19–29.
- Khokhlova J., Khokhlov M., Tunik A. et al. Nanoindentation of Micro Weld Formed through Thin Nanolayered Filler, Springer book, 2014, vol. 203, рр. 251–262.
- Panin V.E., Grinyayev Yu.V., Danilov V.I. et al. Strukturnyye urovni plasticheskoy deformatsii i razrusheniya (Structural Levels of Plastic Deformation and Fracture), Novosibirsk, 1990, 255 p. (in Russ.)
- Likhachev V.A., Panin V.E., Zasimchuk E.E. et al. Kooperativnyye protsessy i lokalizatsiya deformatsii (Cooperative Processes and Localization of Deformation), Kiyev, 1989, 320 p. (in Russ.)
- Finkel' V.M. Fizika razrusheniya (Physics of Destruction), Moscow, 1970, 322 p. (in Russ.)
- Kachanov L.M. Fundamental'naya mekhanika razrusheniya (Fundamental Fracture Mechanics), Moscow, 1974, 311 p. (in Russ.)
- Skotnikova M.A., Ivanova G.V., Popov A.A. Lecture Notes in Mechanical Engineering, 2018, vol. 26, рр. 143–150.
- Skotnikova M.A., Strel'nikova A.A., Ivanova G.V. et al. Sovremennoye mashinostroyeniye: Nauka i obrazovaniye (Modern Engineering: Science and Education), St. Petersburg, 2019, рр. 444–464. (in Russ.)
- Skotnikova M.A., Krylov N.A., Tsvetkova G.V. et al. Lecture Notes in Mechanical Engineering, 2016, vol. 25, рр. 159–168.
- Skotnikova M.A., Krylov N.A. Lecture Notes in Mechanical Engineering, 2017, vol. 26, рр. 115–123.
- Krylov N.A., Skotnikova M.A., Popov A.A. 17th Int. Symposium “Doctoral School of Energy and Geotechnology III”, School of Engineering, Tallinn University of Technology, 15–20.01.2018, Kuressaare, Estonia, 2018, рр. 34–37.
- Skotnikova M.A., Krylov N.A., Popov A.A. Procedia Engineering, 2017, рр. 777–782.