ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2020-63-10-907-920

UDC 520.6.07

ESTIMATION OF PERTURBING ACCELERATIONS AFFECTING THE SPACE GRAVITATIONAL WAVE ANTENNA SOIGA-2

E. A. Karaush
PhD; The All-Russian Research Institute for Physical-Technical and Radio-Technical Measurements, Research Department of the Development and Operation of Means of Metrological Assur-ance of Coordinate-Time and Navigation Systems; Senior Scientist;


R. A. Davlatov
All-Russian Scientific Research Institute of Physical-Technical and Radio-Technical Measurements; Junior Scientist


S. S. Donchenko
The All-Russian Research Institute for Physical-Technical and Radio-Technical Measurements, Research Department of the Development and Operation of Means of Metrological Assur-ance of Coordinate-Time and Navigation Systems;


Y. V. Gostev
The All-Russian Research Institute for Physical-Technical and Radio-Technical Measurements, Research Department of the Development and Operation of Means of Metrological Assurance of Coordinate-Time and Navigation Systems; Head of Laboratory;


D. A. Sokolov
The All-Russian Research Institute for Physical-Technical and Radio-Technical Measurements, Research Department of the Development and Operation of Means of Metrological Assurance of Coordinate-Time and Navigation Systems;


E. A. Lavrov
The All-Russian Research Institute for Physical-Technical and Radio-Technical Measurements, Research Department of the Development and Operation of Means of Metrological Assurance of Coordinate-Time and Navigation Systems;


P. G. Kharlamov
The All-Russian Research Institute for Physical-Technical and Radio-Technical Measurements, Research Department of the Development and Operation of Means of Metrological Assurance of Coordinate-Time and Navigation Systems;


Read the full article 

Abstract. Russian gravitational wave antenna SOIGA-2 is a cluster including four spacecrafts in each of GLONASS orbits located at the vertices of a square. An analysis of disturbing forces applied to the spacecraft SOIGA-2 is performed. An estimate of values of the gravitational and non-gravitational disturbing accelerations is presented. The allowable level of disturbing accelerations for detection of gravitational waves are listed. A method for compensation of non-gravitational forces using a drag-free satellite system is proposed as well as preliminary calculation of the forces of gravitational nature and their subsequent subtraction.
Keywords: GLONASS, orbit, gravitational and non-gravitational forces, gravitational waves, SOIGA-2

References:
  1. Donchenko S.S. et al. Almanac of modern metrology, 2020, no. 3(23), pp. 54-96. (in Russ.)
  2. http://www.glonass-svoevp.ru/DATA/Documents/IKD_SVO.pdf. (in Russ.)
  3. Hugentobler U., Schaer S., Fridez P., eds., Bernese GPS software. Version 4.2, Astronomical Institute, University of Berne, 2001.
  4. Gipsy-Oasis II: A High Precision GPS Data Processing System and General Satellite Orbit, https://trs.jpl.nasa.gov/bitstream/handle/2014/31777/95-1323.pdf?sequence=1&isAllowed=y.
  5. Angermann D., Baustert G., Galas R., Zhu S.Y. EPOS.P.V3 (Earth Parameter and Orbit System): Software user manual for GPS data processing; version September 1997, Scientific Technical Report, 1997, 52 р.
  6. Meyer U., Charlot P., Biancale R. GINS: A new Multi-Technique Software for VLBI Analysis. International VLBI Service for Geodesy and Astrometry. 2000 General Meeting Proceedings, Kötzing, Germany, February 21-24, 2000, pp. 324–328.
  7. Introduction to GAMIT/GLOBK, http://geoweb.mit.edu/gg/Intro_GG.pdf.
  8. Duboshin G. Nebesnaya mekhanika. Metody teorii dvizheniya iskusstvennykh nebesnykh tel (Celestial Mechanics. Methods of the Theory of Motion of Artificial Celestial Bodies), Moscow, 1983, 352 р. (in Russ.)
  9. Beutler G., Brockmann E., Gurtner W., Hugentobler U., Mervart L., Rothacher M., Verdun A. Manuscr. Geod., 1994, no. 19, pp. 367–386.
  10. Arnold D., Meindl M., Beutler G., Dach R., Schaer S., Lutz S., Prange L., Sośnica K., Mervart L., Jäggi A. Geod, 2015, no. 8(89), pp. 775–791.
  11. Orbit and attitude modeling at the JPL Analysis Center. IGS Workshop, Int. GNSS Serv. Workshop, http://www.igs.org/assets/pdf/Workshop%202014%20-%20PY05%20-%20Weiss%20-%202337%20-%20Orbit%20and%20Attitude%20Modeling%20at%20the%20JPL%20Analysis%20Center.pdf.
  12. Springer T., Beutler G., Rothacher M. GPS solutions, 1999, no. 2, pp. 50–62, http://link.springer.com/article/10.1007/PL00012757.
  13. Teunissen P.J., Montenbruck O., ed., Springer Handbook of Global Navigation Satellite Systems, Springer, Cham. 2017. 1327 p. DOI: 10.1007/978-3-319-42928-1.
  14. Knocke P.C., Ries J.C., Tapley B.D. Proc. AIAA/AAS Astrodyn. Conf., Minneapolis, 1988, pp. 577–587.
  15. Rodriguez-Solano C.J., Hugentobler U., Steigenberger P., Lutz S. J. Geod., 2012, no. 5(86), pp. 309–317.
  16. Showman A.P., Dowling T.E. Encyclopedia of the Solar System, Elsevier, 2014, рp. 427.
  17. Nusinov M.D. Kosmicheskiy vakuum i nadezhnost' kosmicheskoy tekhniki (Space Vacuum and Space Technology Reliability), Moscow, 1986, 64 р. (in Russ.)
  18. Perov A.I., Kharisov V.N. eds., GLONASS: printsipy postroyeniya i funktsionirovaniya (GLONASS: Principles of Construction and Functioning), Moscow, 2010, 800 р. (in Russ.)
  19. Petit G. and Luzum B., eds., IERS Technical Note, 2010, vol. 36, рр. 179.
  20. Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. J. Geophys. Res. Solid Earth, 2012, no. B4(117), pp. 1978–2012.
  21. Gorobets V.P., Efimov G.N., Stolyarov I.A. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT), 2015, no. 2(30). (in Russ.)
  22. Parametry Zemli 1990 goda (PZ-90.02). Parametry obshchezemnogo ellipsoida i gravitacionnogo polya Zemli (Earth Parameters 1990 (PZ-90.02). Parameters of the Common Terrestrial Ellipsoid and the Earth's Gravitational Field), Moscow, 2002. (in Russ.)
  23. McCarthy D., Petit G. IERS conventions (2003): tech. rep., 2004, 127 p.
  24. Lyard F., Lefèvre F., Letellier T., Francis O. Ocean Dyn., 2006, vol. 56, pp. 394–415.
  25. Savcenko R. and Bosch W. EOT11a — Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry. Tech. rep. DGFI no. 89, 2012, https://epic.awi.de/36001/1/DGF I_Report_89.pdf.
  26. Wei Liu, Yang Gao, Scientia Sinica Physica, Mechanica & Astronomica, 2020, no. 7(50), pp. 079503.