ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2020-63-10-930-937

UDC 681.586.5

USING AN OPTICAL FIBER MACRO BEND AS THE BASIS FOR CREATING A MASS SENSOR

H. V. Vasileuski
Belarusian State Academy of Communications, Industry Laboratory of Information and Communication Technologies;


A. O. Zenevich
Belarusian State Academy of Communications, Industry Laboratory of Information and Communication Technologies; Rector;


S. V. Zhdanovich
PhD, Associate Professor; Belarusian State Academy of Com-munications, Industry Laboratory of Information and Communication Technologies; Head of the Laboratory;


T. M. Lukashik
Belarusian State Academy of Communications, Industry Laboratory of Information and Communication Technologies; Teacher of the 1st Category;


N. A. Lahutsik
Belarusian State Academy of Communications, Industry Laboratory of Information and Communication Technologies;


Read the full article 

Abstract. A fiber-optic sensor is developed which, in contrast to widely used detectors, allows to detect not only the fact of crossing the protected area border intrusion into, but also a characteristic of the intruder, namely its mass. The optical fiber selected for the presented sensor, G 655, demonstrate the highest susceptibility to macro bending. It shown that an increase in the length of the macro bending arc at a constant radius, R, leads to an increase in the attenuation of optical radiation passing through the fiber. This dependence is close to linear in the range of macro bend arc lengths from zero to πR.
Keywords: fiber-optic sensor, optical fiber, macro bending, wavelength, attenuation coefficient

References:
  1. Butusov M.M., Galkin S.L., Orobinskiy S.P., Pal B.P. Volokonnaya optika i priborostroyeniye (Fiber Optics and Instrumentation), Leningrad, 1987, 328 р. (in Russ.)
  2. Murashkina T.I., Savochkina M.M. Nadezhnost' i kachestvo (Reliability and Quality), Proceedings of the International Symposium), 2016, vol. 2, рр. 349–350. (in Russ.)
  3. Ren L. et al. Optical fiber technology, 2014, no. 1(20), pp. 15–23.
  4. Li L. et al. Photonic Sensors, 2014, no. 2(4), pp. 162–167.
  5. Burdysheva O.V., Sholgin E.S. Foton-Ekspress-Nauka (Photon-Express-Science), Special issue, 2019, no. 6, pp. 52–53. (in Russ.)
  6. Chen W. et al. IEEE on International Symposium, 2015, рр. 324–328.
  7. Mamidi V.R. et al. Optica Applicata, 2014, no. 2(44), pp. 299–308.
  8. Kulikov A.V., Ignat'yev A.V. Algoritmy bezopasnosti, 2010, no. 4, pp. 56–61. (in Russ.)
  9. Dmitriyev A.V., Krasivskaya M.I., Yurin A.I. Datchiki i sistemy, 2013, no. 5(168), pp. 34–37. (in Russ.)
  10. Patent RU 2509994, G01L11/02, Volokonno-opticheskoye ustroystvo izmereniya davleniya (Fiber Optic Pressure Measuring Device), V.I. Pustovoy, I.G. Likhachev, 2014. (in Russ.)
  11. Vasilevskiy G.V., Zenevich A.O., Lagutik A.A, Lukashik T.M., Novikov E.V. Communication, 2019, no. 1, pp. 40–44. (in Russ.)
  12. Zhdanovich G.V. Vesník suvyazí, 2020, no. 1(159), pp. 56–59. (in Russ.)
  13. Ushakov A.O., Rakhimov N.R. Iterekspo Geo-Sibir', 2011, no. 1(5), pp. 1–5. (in Russ.)
  14. Shilova I.V. Vestnik Belorussko-Rossiyskogo universiteta, 2012, no. 4(37), pp. 116–124. (in Russ.)
  15. Zenevich A.O. Obnaruzhiteli utechki informatsii iz opticheskogo volokna (Fiber Optic Leak Detectors) Minsk, 2019, 280 р. (in Russ.)