ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2021-64-1-21-31

UDC 004.58, 004.051

METHODS FOR PROCESSING SPATIAL STRUCTURES IN SATELLITE IMAGES

D. Y. Andrianov
Murom Institute (Branch) of Vladimir State University, Department Information Systems;


S. V. Eremeev
Murom Institute (Branch) of Vladimir State University, Murom, 602252, Russian Federation ; Associate Professor


Y. A. Kovalev
Murom Institute of Vladimir State University, Department of Information Systems;


D. V. Titov
Southwest State University, Department of Computer Engineering; Professor


Read the full article 

Abstract. An algorithm for processing spatial objects with the same topological structure on satellite images is considered. The essence of the method is the identification of structures that are stable under topological deformations and distortions. The only thing that does not change when zooming and rotating the object is its shape. The topology does not account for an object coordinates but considers its structure. Experiments with images of several areas carried out using developed algorithm and software product showed that spatial features in the images are recognized with an accuracy of 93 %. According to images comparison performed with the use of three-dimensional barcodes, the topology of objects and their barcodes do not change over time and at different scales. The algorithm for matching three-dimensional barcodes avoids manual processing of images, which reduces the time for searching and matching objects from several hours to several minutes.
Keywords: persistent homology, topology, three-dimensional barcode, spatial structures

References:
  1. Arroyo Ohori K., Ledoux H. and Stoter J.E. International Journal of Geographical Information Science, 2015, no. 7(29), pp. 1166–1186.
  2. Stoter J.E., van Oosterom P.J.M. Techncial University of Delft, 2014, рр. 2–16.
  3. Stoter J.E., van Oosterom P.J.M., Quak C.W., Visser T., Bakker N. International Journal of Geograph-ical Information Science, IJGIS, 2010, no. 5(25), pp. 739–763.
  4. Meijers M., van Oosterom P.J.M., Quak C.W. Advances in GIScience, 2009, рр. 345–367.
  5. Vermeij M., van Oosterom P., Quak W., Tijssen Т. 7th International Conference on GeoComputation. Southampton, 2003, http://resolver.tudelft.nl/uuid:4186ccb1-516a-422f-9fd8-99b758c98bc1.
  6. Croom F.H. Cengage Learning, 2002, 302 p.
  7. Zhilin Li, Qi Zhou. J. of Geographical Information Science, 2012, vol. 26, рр. 855–880.
  8. Boissonnat J.-D., Karthik C. S., Tavenas S. An extended abstract appeared in the proceedings of SoCG, 2015.
  9. Attali D., Lieutier A., Salinas D. International Journal of Computational Geometry and Applications, 2012, no. 4(22), pp. 279–303.
  10. Badr A., Geffert V., Shipman I. RAIRO Theoretical Informatics and Applications, 2009, no. 1(43), pp. 69–94.
  11. Boissonnat J-D., Karthik C. S., Tavenas S. Symposium on Computational Geometry. 2015, рр. 642–656.
  12. Boissonnat J.-D., Maria C. Algorithmica, 2014, no. 3(70), pp. 406–427.
  13. Boissonnat J.-D., Mazauric D. Theoretical Computer Science, 2016, vol. 617, рр. 28–44.
  14. Goodchild M.F., Haining R.P. Fifty Years of Regional Science, 2004, рр. 363–385.
  15. Cheremisina E.N., Spivak I.L., Spivak L.F., Sokolov A.S. Geoinformatika, 2014, no. 4, pp. 29–37. (in Russ.)
  16. Cheremisina E.N., Spivak I.L., Spivak L.F. Geoinformatika, 2013, no. 3, pp. 1–7. (in Russ.)
  17. Anselin L., Hudak S. Spatial data analysis with GIS in An introduction to application in the social sciences, 1992, рp. 92.
  18. Gatrell A.C., Bailey T.C., Diggle P.J., Rowlingson B.S. Transactions, Institute of British Geographers, 1996, vol. 21, рр. 256–274.
  19. Wong D., Lee J. Statistical Analysis with ArcView GIS and ArcGIS, 2005, 464 р.
  20. Wiley J., Haining R. Spatial Data Analysis, 2003, 430 p.
  21. Gonzalez R.C., Woods R.E. Digital Image Processing, Prentice Hall, 2008, 954 р.