ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2021-64-4-264-269

UDC 621.3-1/-8: 621.3.047.3

DETERMINING THE OPTIMAL NUMBER OF CONTACT PAIRS FOR A SLIP RING DESIGN

P. Simonov
ITMO University, Faculty of Control Systems and Robotics;


M. V. Abramchuk
ITMO University, Department of Mechatronics; senior lecturer


I. A. Bzhikhatlov
ITMO University, Faculty of Control Systems and Robotics;


Read the full article 

Abstract. Several features of constructing concentric conductive rings using rolling elements, which are planned to be used as structures like rolling bearings, are described. Such a design is reported to have advantages over sliding elements, including a large service life, high rotation speed, and low drag moment. The reasons for the occurrence of electrical noise in working slip rings are considered in detail using the example of electrical circuits containing resistors connected in parallel. Using the example of the investigated electrical circuit, to which a pair of contacts is added, the dependence of the resistance value in the slip rings on the number of contacts connected to them is determined.
Keywords: slip ring, contact ring, sliding contacts, electrical noise, resistors, resistance

References:
  1. Devine E.J. Rolling element slip rings for vacuum application, Washington, D.C., National Aeronautics and Space Administration, 1964.
  2. Suzumura J. Quarterly Report of RTRI, 2016, no. 1(57), pp. 42–47, DOI: https://doi.org/10.2219/rtriqr.57.1_42.
  3. Deng Z., Li W., Li C. Optics letters, 2016, no. 12(41), pp. 2859–2862, DOI: 10.1364/OL.41.002859.
  4. Avino F., Gaffinet B., Bommottet D., Howling A., & Furno I. IEEE Aerospace and Electronic Systems Magazine, 2020, no. 8(35), pp. 32–36, DOI: 10.1109/MAES.2020.2993388.
  5. Egeto T., Farkas B. Periodica Polytechnica Electrical Engineering and Computer Science, 2018, no. 4(62), pp. 149–154, DOI: 10.3311/PPee.12495.
  6. Zhang Q., Xie Z., Liu Y., & Liu H. International Conference on Intelligent Robotics and Applications, Springer, Cham, 2019, рр. 462–469, DOI: 10.1007/978-3-030-27526-6_40.
  7. Kulhari P., Soni R.K. International Journal of Microwave Engineering and Technology, 2019, no. 1(5), pp. 24–30, DOI: 10.37628/ijmet.v5i1.1086.
  8. Astolfi D., Castellani F., Natili F. Diagnostyka, 2019, no. 30(20), pp. 3–9, DOI: 10.29354/diag/109968.
  9. Zhu X., Cheng M. IEEE Access, 2019, vol. 7, рр. 51129–51139, DOI: 10.1109/ACCESS.2019.2911298.
  10.  Matveyev A.N. Elektrichestvo i magnetizm (Electricity and Magnetism), Moscow, 2005, 463 р. (in Russ.)
  11. Gerasimov V.G., Kuznetsov E.V., Nikolayeva O.V. Elektrotekhnika i elektronika. kniga 1. Elektricheskiye i magnitnyye tsepi (Electrical and Electronics. Book 1. Electric and Magnetic Circuits), Moscow, 1996, 288 р. (in Russ.)
  12. Osipov Yu.M., Petrov E.A. Analiz razvetvlennykh tsepey postoyannogo i peremennogo toka (AC and DC Branched Circuit Analysis), St. Petersburg, 2002, 42 р. (in Russ.)
  13. Beletskiy A.F. Teoriya lineynykh elektricheskikh tsepey (Theory of Linear Electrical Circuits), St. Petersburg, 2017, 544 р. (in Russ.)
  14. Usol'tsev A.A. Nelineynyye elektricheskiye i magnitnyye tsepi (Non-Linear Electrical and Magnetic Circuits), St. Petersburg, 2018, 114 р. (in Russ.)