ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2021-64-8-599-607

UDC 519.62

SEMI-EXPLICIT MULTISTEP ADAMS-BASHFORTH-MOULTON METHODS FOR SOLVING STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

A. V. Tutueva
Saint Petersburg Electrotechnical University (ETU "LETI"), Saint Petersburg, 197376, Russian Federation; assistant


D. N. Butusov
Saint Petersburg State Electrotechnical University “LETI”, Saint Petersburg, 197376, Russian Federation; Associate Professor


E. E. Kopets
St. Petersburg Electrotechnical University "LETI", Department of Computer-Aided Design;


V. G. Rybin
Saint Petersburg Electrotechnical University (ETU "LETI"), Saint Petersburg, 197376, Russian Federation; software engineer


A. G. Davidchuk
St. Petersburg Electrotechnical University "LETI", Department of Computer-Aided Design;


Read the full article 

Abstract. The computational efficiency of semi-explicit and semi-implicit multistep methods of numerical integration when applied to simulation of seven-dimensional stiff system of ordinary differential equations is studied. A general description of semi-explicit and semi-implicit Adams-Bashforth-Moulton methods is presented. Performance of solvers based on investigated methods of the fourth order is compared to that of solvers using Adams methods and the backward differentiation formula. The computational experiments carried out confirm that the proposed modifications of the Adams-Bashforth-Moulton method demonstarate the best performance among the considered multistep schemes, when simulating with a constant and variable integration step. It is assumed that the obtained results can be used to speed up numerical modeling in modeling subsystems of computer-aided design systems.
Keywords: multistep methods, semi-explicit integration, stiff system, numerical integration, prediction-correction method, Adams-Bashforth-Moulton method

References:
  1. Iri M., Tsuchiya T., Hoshi M. Journal of Computational and Applied Mathematics, 1988, no. 3(24), pp. 365–392.
  2. Faragó I. et al. Computers and Mathematics with Applications, 2014, no. 12(67), pp. 2085–2087.
  3. Faragó I. et al. Computers and Mathematics with Applications, 2013, no. 3(65), pp. 297–300.
  4. Korchak A.B. Metod uskoreniya chislennogo resheniya sistem ODU i yego primeneniye dlya programmnogo kompleksa modelirovaniya sverkhbol'shikh integral'nykh skhem (A Method for Accelerating the Numerical Solution of ODE Systems and Its Application for a Software Package for Modeling Very Large Integrated Circuits), Candidate’s thesis, Moscow, 2011, 112 р. (in Russ.)
  5. Han T., Han Y. IEEE Access, 2013, vol. 1, рр. 537–544.
  6. Hairer E., Nørsett S.P., Wanner G. Solving Ordinary Differential Equations. Nonstiff problems, Springer Series in Computational Mathematics, 1990.
  7.  Samarskiy A.A. Teoriya raznostnykh skhem (Difference Scheme Theory), Moscow, 1983. (in Russ.)
  8. Tutueva A., Karimov T., Butusov D. Mathematics, 2020, no. 5(8), pp. 780.
  9. Butusov D.N., Karimov A.I., Karimov T.I. Apparatno-oriyentirovannyye chislennyye metody integrirovaniya (Hardware-Oriented Numerical Integration Methods), St. Petersburg, 2016, 192 р. (in Russ.)
  10. Butusov D.N., Karimov A.I., Tutueva A.V. 2016 International Siberian Conference on Control and Communications (SIBCON), IEEE, 2016, рр. 1–6.
  11. Ostrovskii V.Y., Butusov D.N., Toepfer H. International Academic Forum Амо–Spitse–Neseff, 2016, рp. 44–46.
  12. Tutueva A.V. et al. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), IEEE, 2019, рр. 366–368.
  13. Hairer E., Lubich C., Wanner G. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, Springer Science & Business Media, 2006, vol. 31.
  14. Blanes S., Casas F. A concise introduction to geometric numerical integration, CRC press, 2017.
  15. Butusov D.N. et al. Communications in Nonlinear Science and Numerical Simulation, 2021, vol. 92, рр. 105467.
  16. Yu W. et al. IEEE Access, 2019, vol. 7, рp. 125586–125608.
  17. Akhmerov R.R. Chislennyye metody resheniya obyknovennykh differentsial'nykh uravneniy (Numerical Methods for Solving Ordinary Differential Equations), Novosibirsk, 1994, 100 р. (in Russ.)