ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2021-64-11-887-895

UDC 623.61

METHODOLOGY FOR ASSESSING THE NOISE IMMUNITY OF DATA EXCHANGE RADIO LINES WITH TIME DIVISION OF CHANNELS

G. P. Pukha
St. Petersburg State University of Economics, Department of Applied Information Technologies; Professor


S. M. Pishchalnikov
Military Educational and Scientific Center of the Navy "Naval Academy Named after Admiral of the Fleet of the Soviet Union N.G. Kuznetsov", Department of Combat Use (Communication Facilities and Automated Control Systems of the Navy);


A. A. Emelyanov
St. Petersburg State University of Economics, Department of Applied Information Technologies;


Read the full article 

Abstract. Results of research on development of an analytical model of data transmission algorithm that implements temporary access to a radio network resource and technologies for the formation of wide-band signal-code structures are presented. The application of a unified information distributed system with temporary access separation in the context of the use of radio channels for the transmission of packet data is described. A method of estimating the noise immunity of a radio line is considered based on obtained analytical functions that allow for a probabilistic assessment of the correct reception of a sent message in a pre-nondeterministic data transmission environment with a variable level of interference. The perspectives of using the developed analytical models to build promising data transmission systems based on radio are postulated. The possibility of application of obtained results in simulation modeling to solve the problem of providing the necessary level of broadband communication is analyzed.
Keywords: radio data exchange network, multiple access, time-sharing of the network resource, radio link immunity, analytical model, calculation method

References:
  1. Nguyen Van Dung, J. Radio Electronics, 2019, no. 3, DOI: 10.30898/1684-1719.2019.3.4.
  2. Maheswaran P., Selvaraj M.D. IEEE Systems J., 2019, no. 2(13), pp. 1202–1209, DOI: 10.1109/2018.2828220.
  3. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. 2019 wave electronics and its application in information and telecommunication systems (weconf 2019), рр. 8840647, DOI: 10.1109/WECONF.2019.8840647.
  4. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. 2019 wave electronics and its application in information and telecommunication systems (weconf 2019), рр. 8840643, DOI: 10.1109/WECONF.2019.8840643.
  5. Bogatyrev V.A. Informatsionnyye tekhnologii, 2006, no. 9, pp. 25–30. (in Russ.)
  6. Luo Y., Lutsenko V.I., Popov I.V., Lutsenko I.V., Mazurenko A.V. 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), Proc. Kharkov, Ukraine, 21–24 June 2016, DOI: 10.1109/2016.7538080.
  7. Dung N.V., Kulikov G.V., Tien D.Ch. Russian Technological Journal, 2020, no. 3(8), pp. 48–58, DOI: 10.32362/2500-316X-2020-8-3-48-58.
  8. Deepak K. Chy, Khaliluzzaman Md. Wireless Comm. Mobile Comput., 2015, no. 1(3), pp. 7–12, DOI: 10.11648/20150301.12.
  9. Yang B., Zhiqiang Yu., Jianyi Z. Progress in Electromagnetics Research Symposium, 2017, рр. 508–512, DOI: 10.1109/2017.8293191.
  10. Kulikov G.V., Nesterov A.V., Lelyukh A.A. Journal of Radio Electronics, 2018, no. 11, DOI: 10.30898/1684-1719.2018.11.9.
  11. Kharchenko N.K. Zarubezhnoye voyennoye obozreniye, 2003, no. 6, pp. 22–30. (in Russ.)
  12. Bui Huu Chuc., Kaganov W.I. Engineering Physics, 2019, no. 1, pp.34–38, DOI: 10.25791/01.2019.391.
  13. Villemazet J.-F., Yahi Н., Lefebvre B., Baudeigne F., Maynard J. et at. 2017 47th European Microwave Conference (EuMC), 10–12 Oct. 2017, IEEE, 21 Dec. 2017, DOI: 10.23919/ 2017.8231024.
  14. Petushkov S.V., Vilderman E.N., Belov L.A. 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 4–5 July 2018, Minsk, Belarus, DOI: 10.1109/SYNCHROINFO.2018.8457049.
  15. Baranov A.G., Pishchalnikov S.M., Pukha G.P., Khokhlov G.G. Trudy NII OSIS VMF VUNTS VMF "Voyenno-morskaya akademiya" (Proceedings of the NII OSIS Navy VUNC Navy "Naval Academy"), part I, St. Petersburg, Petrodvorets, 2019, рр. 260–268. (in Russ.)
  16. Pukha G.P., Pishchalnikov S.M. Otsenka effektivnosti avtomatizirovannykh radioliniy i setey peredachi dannykh TZU VMF (Evaluation of the Effectiveness of Automated Radio Lines and Data Transmission Networks of the Navy's TDC), St. Petersburg, 2021, 242 р. (in Russ.)
  17. Zhou S., Qian S., Chang W., Xiao Y., Cheng Y. Sensors, 2018, no. 6(18), pp. 1934, DOI: 10.3390/s18061934.
  18. Emelianov A.A., Avksentieva E.Y., Avksentiev S.Y., Zhukov N.N. International Journal of Advanced Trends in Computer Science and Engineering, 2019, no. 6(8), pp. 3277–3281.
  19. Wen L., Gao L., Li X., Wang L., Zhu J. Procedia CIRP, 2018, no. 72, pp. 1084−1087, DOI: 10.1016/ 2018.03.117.
  20. Gusev N.A., Vetoshko P.M., Kuz'michev A.N., Cheprunova D.A., Samoilova E.V., Zvezdin A.K., Korotaeva A.A. Biomedical Engineering, 2017, no. 3(51), pp. 157–161, DOI: 10.1007/s10527-017-9705-8.