ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2021-64-11-909-915

UDC 681.513.2

ROBUST CONTROL SYSTEM FOR HEAT EXCHANGER IN HOP EXTRACT PRODUCTION

N. S. Kolesnik
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, 199178, Russian Federation; Research Assistant


A. A. Margun
ITMO University, Saint Petersburg, 197101, Russian Federation; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, 199178, Russian Federation; Associate professor; Scientific Researcher


Read the full article 

Abstract. A control system developed for liquid heat exchanger in hop extract production is presented. A robust controller based on the sliding mode method and the full-order Luenberger observer is implemented. A comparative analysis of this method and the PID control method using pulse-width modulation under conditions of disturbances, noise and quantization of measurements is carried out. Simulation results confirming the advantages of the proposed approach are presented.
Keywords: heat exchanger, hop extraction, control system, PID controller, sliding mode method

References:
  1. Khristyuk A.V., Kas'yanov G.I. Pishchevaya promyshlennost' (Food Industry), Moscow, 2007, рр. 10–12. (in Russ.)
  2. Danilushkin I.A., Guseva M.A. Matematicheskoye modelirovaniye i krayevyye zadachi (Mathematical Modeling and Boundary Value Problems), 8th All-Russian Scientific Conference, Samara, 2011, рр. 44–47. (in Russ.)
  3. Costa S.J., Ferreira R., Igreja J.M. 14th APCA International Conference on Automatic Control and Soft Computing, CONTROLO, 2020, vol. 695 LNEE, рр. 293–302.
  4. Somasundar Reddy C., Balaji K. 1st International Conference on Computational Engineering and Material Science, ICCEMS 2020, GM Institute of Technology Davangere, Karnataka, India, 17–18 July 2020, vol. 925, рр. 012020.
  5. Adnan Khalid, Kamran Zeb, Aun Haider, 2019 International Conference on Engineering and Emerging Technologies (ICEET), 2019, DOI: 10.1109/CEET1.2019.8711871.
  6. Chu Zhou, Yao Wang, Xiaojie Zhang, Shaocheng Qu, Proceedings of 2014 International Conference on Modelling, Identification & Control, 2014, DOI: 10.1109/ICMIC.2014.7020717.
  7. Kanzari Z., Khediri J., Zaafrane W., Jemli M. 2016 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2016, no. 17258946, DOI: 10.1109/CISTEM.2016.8066771.
  8. Howimanporn S., Chookaew S., Silawatchananai C. 2020 4th International Conference on Automation, Control and Robots (ICACR), 2020, no. 2020802, DOI: 10.1109/ICACR51161.2020.9265510.
  9. Bhattarai B.P., De Cerio Mendaza I.D., Bak-Jensen B., Pillai J.R. CIGRE Session 46, 2016, no. С6-201.
  10. Kueiming Lo, Rui Jiang, Cybernetic and Systems, 2007, DOI:10.1080/01969720601139009.
  11. Hanczyc E.M., Palazoglu A. 1993 American Control Conference, 1993, DOI: 10.23919/ACC.1993.4792897.
  12. Jun-Chao Ren, Ding Liu, Zhan Wang, Yin Wan, 2019 Chinese Automation Congress (CAC), 2019, no. 19394675, DOI: 10.1109/CAC48633.2019.8997257.
  13. Najar A.M., Arif D.K. Journal of Physics: Conference Series, 2019, no. 1(1218), pp. 012055.
  14. Perez-Pirela PM.C., Garcia-Sandoval J.P. ENFOQUE UTE, 2018, no. 4(9), pp., рр. 110–119.
  15. Shah D, Shah A, Mehta A. European Journal of Control, 2021, vol. 58, рр. 301–314.
  16. Ma Z., Mao X., Cai L., Liu X. 4th International Conference on Control Science and Systems Engineering, ICCSSE 2018, no. 8724799, pp. 16–20.
  17. Ivaykin V. Contemporary Technologies in Automation, 2006, no. 1, pp. 90–94. (in Russ.)