ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2021-64-12-1010-1017

UDC 612.221+53.087

METHOD AND DEVICE FOR DIAGNOSING DISEASES OF THE HUMAN RESPIRATORY SYSTEM

G. N. Lukyanov
ITMO University, Saint Petersburg, 197101, Russian Federation; Head of Chair


A. A. Rassadina
ITMO University, Faculty of Control Systems and Robotics;


R. . Neronov
Saint Petersburg Military Medical Academy n.a. S.M. Kirov; lecturer


Read the full article 

Abstract. An instrument is developed on the base of a new method for diagnosing respiratory diseases using the proposed method of dynamic measurements of respiratory parameters (the speed of inhaled and exhaled air flow, pressure or temperature). Such measurements make it possible to register rapid fluctuations containing information about the most subtle processes in the respiratory organs. Based on this method, a device is constructed that registers fluctuations in air pressure in the nasal cavity during breathing, for early diagnosis of respiratory diseases.
Keywords: diagnosing the human respiratory system diseases, nonlinear mechanic methods, high-frequency oscillations analysis

References:
  1. Zabolevayemost' vsego naseleniya Rossii v 2017 godu. Statisticheskiye materialy. Ministerstvo zdravookhraneniya RF (The Incidence of the Entire Population of Russia in 2017. Statistical Materials. Ministry of Health of the Russian Federation), Moscow, 2018, pt. 1, 140 р. (in Russ.)
  2. Steiner M.L., Blashentseva S.A., Zhestkov A.V., Brylyaeva E.V., Ustinov M.S., Protasov A.D. Fundamental'nyye issledovaniya, 2011, no. 9, pp. 163–169. (in Russ.)
  3. Volgareva A.D., Bakirov A.B., Gimranova G.G. et al. Professional'nyye zabolevaniya LOR organov (Occupational Diseases of ENT Organs), Ufa, 2016, 70 р. (in Russ.)
  4. Tarasova L.V., Trukhan D.I. Klinika, diagnostika i lecheniye osnovnykh zabolevaniy organov dykhaniya (Clinic, Diagnosis and Treatment of Major Respiratory Diseases), Cheboksary-Omsk, 2015, 198 р. (in Russ.)
  5. Morozova S.V., Keda L.A. Pharmateca, 2020, no. 5(27), pp. 46–50. (in Russ.)
  6. Gel'tser B.I., Kurpatov I.G., Dey A.A., Kozhanov A.G. Therapeutic Archive, 2019, no. 3, pp. 93–100, DOI: 10.26442/00403660.2019.03.000108 (in Russ.)
  7. Esenbayeva A.K. Rossiyskaya otorinolaringologiya, 2011, no. 5(54), pp. 179–183. (in Russ.)
  8. Sagandykova N.S., Taukeleva S.A. Vestnik KazNMU, 2019, no. 4, pp. 77–79. (in Russ.)
  9. Hilberg O., Pedersen O.F., Eccles R. Rhinol Suppl., 2000, no. 16, pp. 3–17.
  10. Voronin A.A. Issledovaniye vozdushnykh techeniy v kanalakh i polostyakh neregulyarnoy formy (Study of Air Currents in Channels and Cavities of Irregular Shape), Candidate’s thesis, St. Petersburg, 2013, 142 р. (in Russ.)
  11. Lukyanov G.N., Rassadina A.A. Usachev V.I. Journal of Instrument Engineering, 2005, no. 5(48), pp. 63–66. (in Russ.)
  12. Lukyanov G., Usachev V. Proc. of the International Conference on Physics and Control, PhysCon 2003, September 2003, рр. 294–297, DOI:10.1109/PHYCON.2003.1236834.
  13. Lukyanov G., Serov I., Rybina L. Proc. of the International Conference on Physics and Control, PhysCon 2005, September 2005, рр. 884–886, DOI:10.1109/PHYCON.2005.1514115.
  14. Malyshev A.G., Zhumashev N.K., Lukyanov G.N., Mynbaev K.D., Rassadina A.A. Journal of Physics: Conference Series, 2015, no. 1(643), pp. 012026, DOI: 10.1088/1742-6596/643/1/012026.
  15. Lukyanov G., Rassadina A., Neronov R. Conference of Open Innovations Association, FRUCT, 2019, no. 24, pp. 235–242, DOI: 10.23919/FRUCT.2019.8711927.
  16. Lukyanov G.N., Voronin A.A., Rassadina A.A. Technical Physics, 2017, no. 3(62), pp. 484–489, DOI: 10.1134/S1063784217030136.
  17. Lukyanov G.N., Rassadina A.A. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2006, no. 31, pp. 118–121. (in Russ.)