ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2022-65-6-451-456

UDC 69.059.2;539.421;517.953;517.97

CALCULATION OF CRACKS IN METAL STRUCTURES OF TRANSPORT INFRASTRUCTURE FACILITIES

V. L. Tkalich
ITMO University; Professor


M. E. Kalinkina
ITMO University, Saint Petersburg, 197101, Russian Federation; Postgraduate


A. G. Korobeynikov
Saint Petersburg Branch Organization of the Russian Academy of Sciences “Institute of Earth Magnetism, Ionosphere and Radio waves named after N.V. Pushkov RAS”;ITMO University, Saint Petersburg, 197101, Russian Federation ; Deputy Director for Science


O. I. Pirozhnikova
ITMO University; Ph.D.


Read the full article 

Abstract. An actual approach to solving problems of the theory of cracks related to the so-called “extremal problems of mechanics” is presented. The problem of “brittle fracture” for a flat element in the presence of a rectangular crack in it, is considered. An analysis of the fracture change dynamics is carried out based on a mathematical model in partial derivatives. The calculations are performed with specific parameters of the material, in particular aluminum, of the elastic element and the load. The obtained results lead to conclusion on importance of geometric arrangement of the elastic elements in metal products of objects of transport infrastructure monitoring.
Keywords: assessment of technical condition, metal structures, flaw detection, Lipschitz boundaries, theory of energy of shape change

References:
  1. BSI, Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standards Institute, Tech. Rep. BS 7910:2013+A1:2015, 2015, https://doi.org/10.3403/30241230.
  2. Lurie A.I. Teoriya uprugosti (Theory of Elasticity), Moscow, 1970, 940 р. (in Russ.)
  3. Newman J.C. and Raju I.S. Engineering Fracture Mechanics, 1981, no. 1(15), pp. 185–192, https://doi.org/10.1016/0013-7944(81)90116-8.
  4. Bowness D. and Lee M.M.K. International Journal of Fatigue, 2000, no. 5(22), pp. 369–387, https://doi.org/10.1016/S0142-1123(00)00012-8.
  5. Morozov N.F. Matematicheskiye voprosy teorii treshchin (Mathematical Problems of the Theory of Cracks), Moscow, 1984. (in Russ.)
  6. Korobeynikov A.G., Fedosovsky M.E., Maltseva N.K., Baranova O.V., Zharinov I.O., Gurjanov A.V., Zharinov O.O. Indian Journal of Science and Technology, 2016, no. 44(9), pp. 104708.
  7. Korobeynikov A.G., Grishentsev A.Y., Velichko E.N., Aleksanin S.A., Fedosovskii M.E., Bondarenko I.B., Korikov C.C. Optical Memory & Neural Networks (Information Optics), 2016, no. 3(25), pp. 184–191.
  8. Grishentcev A.U., Korobeynikov A.G. Zhurnal Radioelektroniki (Journal of Radio Electronics), 2015, no. 3, https://elibrary.ru/download/elibrary_23327290_33687569.pdf.
  9. Bogatyrev V.A., Bogatyrev S.V. Vestnik komp'iuternykh i informatsionnykh tekhnologii (Herald of Computer and Information Technologies), 2018, no. 2(164), pp. 28–35. (in Russ.)
  10. Muntyan E.R. Informatizatsiya i svyaz', 2021, no. 3, pp. 55–60, DOI: 10.34219/2078-8320-2021-12-3-55-60.(in Russ.)
  11. Kolodenkova A.E., Vereshchagina S.S., Muntyan E.R. Sbornik trudov XIII Vserossiyskogo soveshchaniya po problemam upravleniya VSPU-2019 (Proceedings of the XIII All-Russian Conference on Management Problems of the VSPU-2019), 2019, рр. 1874–1878, DOI: 10.25728/vspu.2019.1874. (in Russ.)