ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 67 / February, 2024
Article

DOI 10.17586/0021-3454-2022-65-7-527-534

UDC 539.3

APPLICATION OF ELASTIC ACTUATORS WITH TORSION SPRING OF VARIABLE STIFFNESS IN ROBOTIC REHABILITATION DEVICES

M. S. Malov
ITMO University, Faculty of Control Systems and Robotics;


V. M. Musalimov
Institute of Problems of Machine Science of the Russian Academy of Sciences, St. Petersburg; Chief Scientific Officer


S. Y. Lovlin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


Read the full article 

Abstract. The issue of optimal spring elasticity in the actuator is investigated in order to develop efficient and compact flexible joints using physical springs for possible use in wearable robotic rehabilitation devices. An overview of domestic and foreign developments is presented, various approaches to the classification of actuators by the spring location are described. The advantages and disadvantages of alternative solutions are considered; a concept of flat torsion is developed, which allows for assembling several springs on one shaft.
Keywords: robotic locomotor rehabilitation, variable stiffness, elastic actuator

References:
  1. Khatib O., Yokoi K., & Brock O., Chang K., Casal A. Intern. J. Robotic Res., 1999, no. 18, pp. 684–696.
  2. De Santis A., Siciliano B., De Luca A., Bicchi A. Mechanism and Machine Theory, 2008, no. 3 (43), pp. 253–270, ISSN 0094-114X, https://doi.org/10.1016/j.mechmachtheory.2007.03.003.
  3. Williamson M.M. Series Elastic Actuators, Tech. Rep. 1524: Massachusetts Institute of Technology. Boston, 1995.
  4.   Robinson D.W., Pratt J.E., Paluska D.J., Pratt G.A. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Sept. 19–22, 1999, Atlanta, GA.
  5. Paine N., Oh S., Sentis L. IEEE/ASME Trans. Mechatron., 2014, no. 19, pp. 1080–1091.
  6.  Paine N., Mehling J.S., Holley J., Radford N.A., Johnson G., Fok C.L., Sentis L. J. Field Robot., 2015, no. 32, pp. 378–396.
  7. Carpino G., Accoto D., Sergi F., Tagliamonte L.N., and Guglielmelli E. ASME. J. Mech. Des., December 2012, no. 12(134), pp. 121002, https://doi.org/10.1115/1.4007695.
  8. Veneman J.F., Ekkelenkamp R., Kruidhof R., van der Helm F., and van der Kooij H. International Journal of Robotics Research, 2006, no. 3(25), pp. 261–281.
  9. Тsagarakis N., Laffranchi M., Vanderborght B., and Caldwell D. Proc. IEEE International Conference on Robotics and Automation, 2009, pp. 4356–4362.
  10. Lagoda C., Schouten A., Stienen A., Hekman E., and van der Kooij H. Proc. 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010, pp. 21–26.
  11. Stienen A., Hekman E., ter Braak H., Aalsma A., van der Helm F., and van der Kooij H. IEEE Transactions on Biomedical Engineering, 2010, no. 3(57), pp. 728–735.
  12. Knox B., and Schmiedeler J.P. ASME Journal of Mechanical Design, 2009, no. 131(125001), pp. 1–5.
  13. Geofizicheskiy kompleks 01-MT8-1. Tekhnicheskoye opisaniye (Geophysical Complex 01-MT8-1. Technical Description), St. Petersburg, 2009, 38 р. (in Russ.)
  14. Musalimov V.M. Mekhanika deformiruyemogo kabelya (Deformable Cable Mechanics), St. Petersburg, 2005, 203 р. (in Russ.)
  15. Musalimov V.M., Mokryak S.Ya., Sokhanev B.V., Shiyanov V.D. Mekhanika kompozitnykh materialov, 1984, no. 1, pp. 136–141. (in Russ.)
  16. Musalimov V.M., Perepelkina S.Yu., Pääsuke M., Gapeeva E.N., Ereline J. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, no. 3 (20), pp. 446–454, DOI: 10.17586/2226-1494-2020-20-3-446-454. (in Russ.)
  17. Daminov V.D. Vestnik vosstanovitel'noy meditsiny, 2012, no. 1. (in Russ.)
  18. Qia Chenglong, Zhu Aibin, Song Jiyuan, Shen Huang, Zhang Xiaodong, Cao Guangzhong, Design and Control of a Novel Series Elastic Actuator for Knee Exoskeleton, 2019, DOI: 10.1007/978-3-030-27535-8_56.