ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2022-65-10-712-724

UDC 621.3, 536.2

INFLUENCE OF PRINTED CONDUCTORS ON THE THERMAL REGIME OF RADIO-ELECTRONIC DEVICES

S. Y. Sotnikova
HSE University, Tikhonov Moscow Institute of Electronics and Mathematics, School of Electronic Engineering;


N. A. Kononova
HSE University, Tikhonov Moscow Institute of Electronics and Mathematics, School of Electronic Engineering;


L. B. Lander
HSE University, Tikhonov Moscow Institute of Electronics and Mathematics, School of Electronic Engineering;


V. E. Tsvetkov
HSE University, Tikhonov Moscow Institute of Electronics and Mathematics, School of Electronic Engineering;


S. V. Yalovnarov
HSE University, Tikhonov Moscow Institute of Electronics and Mathematics, School of Electronic Engineering;


Read the full article 

Abstract. The effect of printed conductors tracing on the thermal modes of printed components of radio-electronic devices is investigated. It is shown that the failure to take into account the thermal process in copper printed conductors when assessing the thermal regime of boards at the development stage can lead to large errors in assessing the radio-electronic device reliability. For computer simulation of thermal regimes, the widely used computer-aided design system SolidWorks is used. Comparison of the results of modeling the printed circuit assembly of the rangefinder with the experimental data makes it possible to prove the need to take into account thermal processes in printed conductors when simulating the radio-electronic devices. It is demonstrated that the commonly used thermal models of printed circuit assemblies, which do not take into account metallization, may lead to an error in determining the temperature of electronic elements up to 22 %. This does not make it possible to make a correct decision on ensuring the reliability of the radio-electronic devices.
Keywords: electronic devices, printed circuit assembly, tracing, metallization, thermal processes, heat removal, reliability assurance

References:
  1. Alekseev V.F., Piskun G.A., Likhachevsky D.V. Big Data and Advanced Analytics, 2020, no. 6-3, pp. 282–286. (in Russ.)
  2. Ellison G.N. Thermal computations for electronics conductive, radiative, and convective air cooling, CRC Press Taylor & Francis Group, Boca Raton, USA, 2011.
  3. Rotkop L.L., Spokoyny Yu.E. Obespecheniye teplovykh rezhimov pri konstruirovanii radioelektronnoy apparatury (Providing Thermal Conditions in the Design of Radio-Electronic Equipment), Moscow, 1976, 232 р. (in Russ.)
  4. Borovikov S.M., Tsyrelchuk I.N., Troyan F.D. Raschet pokazateley nadezhnosti radioelektronnykh sredstv (Calculation of Indicators of Reliability of Radio Electronic Means), Minsk, 2010, 68 р. (in Russ.)
  5. Raja B., Praveenkumar V., Leelaprasad M., Manigandan P. Intern. Journal of Engineering Research and Applications, 2015, no. 11(5), pp. 57–68.
  6. Evstatieva N., Evstatiev B. 12th Intern. Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, рр. 1–4, DOI: 10.1109/ATEE52255.2021.9425281.
  7. Moskalenko K.I. Molodezhnyy nauchno-tekhnicheskiy vestnik (Youth Scientific and Technical Bulletin), 2016, no. 5, pp. 31–38. (in Russ.)
  8. Karaban V.M., Suslov I.O. Reshetnevskiye chteniya, 2012, no. 16, pp. 179–180. (in Russ.)
  9. Rybakov I.M. Transactions of the International Symposium on Reliability and Quality, Penza, 2017, vol. 1, рр. 362–364. (in Russ.)
  10. Rybakov I.M. Transactions of the International Symposium on Reliability and Quality, Penza, 2018, рр. 48–51. (in Russ.)
  11. Karaban V.M., Sukhorukov M.P., Morozov Е.А. Proceedings of Tomsk State University of Control Systems and Radioelectronics, 2013, no. 3(29), pp. 170–174. (in Russ.)
  12. Kofanov Y., Kuznetsov N., Sotnikova S. Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS), IEEE, 2021, рр. 1–4, DOI: 10.1109/ITQMIS53292.2021.9642785.
  13. Dulnev G.N. Teplo- i massoobmen v radioelektronnoy apparature (Heat and Mass Transfer in Electronic Equipment), Moscow, 1984, 247 р. (in Russ.)
  14. Kuznetsov E., Golyaev Y., Kolbas Y., Kofanov Y., Kuznetsov N., Vinokurov Y., Soloveva T. Optical and Quantum Electronics, Springer, Switzerland, 2021, no. 10(53), art. number 596, pp. 1–15, DOI: 10.1007/s11082-021-03253-8.
  15. Goldin V.V., Zhuravsky V.G., Kovalenok V.I. et al. Issledovaniye teplovykh kharakteristik RES metodami matematicheskogo modelirovaniya (Research of Thermal Characteristics of RES by Methods of Mathematical Modeling), Moscow, 2003, 456 р. (in Russ.)
  16. Semenenko A.N., Kofanov Yu.N., Rotkevich A.S., Uvaisov S.U. Quality. Innovation. Education, 2015, no. 12(127), pp. 44–52. (in Russ.)
  17. Zakharyin K.N., Sarafanov A.V., Egorov N.M., Tregubov S.I. Komp'yuternyye tekhnologii v priborostroyenii. Osnovy matematicheskogo i metodicheskogo obespecheniya. Versiya 1.0 (Computer Technologies in Instrument Making. Fundamentals of Mathematical and Methodological Support. Version 1.0), Krasnoyarsk, 2008. (in Russ.)
  18. Rybakov I.M., Goryachev N.V., Kochegarov I.I., Grishko A.K., Brostilov S.A., Yurkov N.K. Journal of Physics: Conference Series, 2017, no. 1(803), pp. 1–6, DOI: 10.1088/1742-6596/803/1/012130.
  19. Dulnev G.N., Parfenov V.G., Sigalov A.V. Primeneniye EVM dlya resheniya zadach teploobmena (The Use of Computers for Solving Heat Transfer Problems), Moscow, 1990, 207 р. (in Russ.)