ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2022-65-12-863-873

UDC 621.837.5

CO-DESIGN OF AN INCOMPLETE-DRIVE HOPPING ROBOT: COMPARATIVE ANALYSIS OF VIRTUAL AND FULL-SCALE EXPERIMENTS

D. V. Ivolga
ITMO University, Faculty of Control Systems and Robotics, International Laboratory of Biomechatronics and Energy-Efficient Robotics;


K. V. Nasonov
ITMO University, Faculty of Control Systems and Robotics, International Laboratory of Biomechatronics and Energy-Efficient Robotics;


I. I. Borisov
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


Read the full article 

Abstract. The forward and inverse design tasks of an incomplete-drive hopping robot capable of energy-efficient dynamic locomotion are considered. A solution to the direct design problem of simulating a robot in a virtual environment in order to study its behavior and performance is presented. A solution of the inverse design problem is obtained, which consists in the formation of requirements and the search for robot parameters that ensure its best performance. Since simulation modeling does not fully reflect the processes occurring in real life, the design results tested exclusively in a virtual environment cannot fully describe the results of a real experiment and replace them. The results of virtual and full-scale experiments of a prototype of a non-wheel drive jumping robot are compared, and the rationale for the discrepancies in the data obtained is given.
Keywords: forward design task, inverse design task, incomplete-drive robot, morphological computation, co-design

References:
  1. Raiola G. et al. IEEE Robotics and automation letters, 2018, no. 2(3), pp. 1237–1244.
  2. Rothling F. et al. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007, рр. 2951–2956.
  3. Lee J. et al. Science robotics, 2020, no. 47(5), pp. eabc5986.
  4. Thomaszewski B. et al. ACM Transactions on Graphics (TOG), 2014, no. 4(33), pp. 1–9.
  5. Roy N. et al. arXiv preprint arXiv:2110.15245, 2021.
  6. Müller V.C., Hoffmann M. Artificial life, 2017, no. 1(23), pp. 1–24.
  7. Folkertsma G.A., van der Schaft A.J., Stramigioli S. IFAC-PapersOnLine, 2015, no. 13(48), pp. 170–175.
  8. Howard D. et al. Nature Machine Intelligence, 2019, no. 1(1), pp. 12–19.
  9. Chen F., Wang M.Y. IEEE Robotics & Automation Magazine, 2020, no. 4(27), pp. 27–43.
  10. Pinskier J., Howard D. Advanced Intelligent Systems, 2022, no. 1(4), pp. 2100086.
  11. Borisov I.I. et al. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2021, рр. 6117–6123.
  12. Borisov I.I. et al. 2022 International Conference on Robotics and Automation (ICRA), IEEE, 2022, рр. 1130–1136.
  13. Gasparri E. et al., ed., Rethinking Building Skins: Transformative Technologies and Research Trajectories, Woodhead Publishing, 2021.
  14. Sims K. Proceedings of the 21st annual conference on Computer graphics and interactive techniques, 1994, рр. 15–22.
  15. Geijtenbeek T., Van De Panne M., Van Der Stappen A.F. ACM Transactions on Graphics (TOG), 2013, no. 6(32), pp. 1–11.
  16.  Wang T. et al. arXiv preprint arXiv:1906.05370, 2019.
  17. Zhao A. et al. ACM Transactions on Graphics (TOG), 2020, no. 6(39), pp. 1–16.
  18.  Marhefka D.W., Orin D.E. Proceedings of IEEE international conference on robotics and automation, IEEE, 1996, vol. 2, рр. 1662–1668.
  19. Hwang Y. et al. IEEE International, 2003, vol. 1, рр. 31–36.
  20. Horowitz P., Hill W., Robinson I. The art of electronics, Cambridge, Cambridge university press, 1989, vol. 2, рр. 658.
  21. Nagymáté G., Kiss R. M. Recent Innovations in Mechatronics, 2018, no. 1(5), pp. 1–9.