ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-4-306-312

UDC 53.043; 53.082; 544.252.24

METHOD FOR OPTICAL MOLECULAR GENERATION OF LOCALIZED CHIRAL STRUCTURES IN PHOTOACTIVE LIQUID CRYSTAL FILMS

D. D. Darmoroz
ITMO University, Faculty of Life Sciences;


A. O. Piven
ITMO University, Faculty of Life Sciences ;


T. Orlova
ITMO University, Faculty of Life Sciences; Infochemistry Scientific Center ; Leading Researcher


Read the full article 

Abstract. Abstract. A method for creating an optical scheme and the principle of using photoactive samples of chiral nematic liquid crystals for optical molecular generation of localized chiral structures are considered. It is shown that the existence of two different static localized chiral structures with sizes of about 25 and 10 µm is possible, depending on the power of the UV laser beam. The processes of reconfiguration of localized chiral liquid crystal structures into each other and into a completely frustrated state of a chiral nematic liquid crystal film are described. These localized structures can be used as miniaturized tunable optical elements for focusing and structuring transmitted light beams.
Keywords: nematic liquid crystal, light-absorbing chiral molecular additive, optical scheme, static localized chiral structure, director field restructuring

References:
  1. Hamdi R. et al. J. Appl. Phys., 2011, no. 7(110).
  2. Yang B., Brasselet E. J. Opt. (United Kingdom), 2013, no. 4(15), pp. 1–5.
  3. Hess A.J. et al. Phys. Rev. X, 2020, no. 3(10), pp. 32–40.
  4. Ackerman P.J., Qi Z., Smalyukh I.I. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2012, no. 2(86), pp. 1–14.
  5. Ackerman P.J. et al. ACS Nano, 2015, no. 12(9), pp. 12392–12400.
  6. Evans J.S. et al. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 2013, no. 3(87), pp. 1–14.
  7. Sohn H.R.O. et al. Phys. Rev. E. American Physical Society, 2018, no. 5(97).
  8. Haas W.E.L., Adams J.E. Appl. Phys. Lett., 1974, no. 5(25), pp. 263–264.
  9. Kawachi M., Kogure O., Kato Y. Jpn. J. Appl. Phys., 1974, vol. 13, pp. 1457, DOI:10.1143/jjap.13.1457.
  10. Ackerman P.J., Smalyukh I.I. Phys. Rev. X, 2017, no. 1(7), pp. 1–27.
  11. Smalyukh I.I. et al. Nat. Mater. Nature Publishing Group, 2010, no. 2(9), pp. 139–145.
  12. Loussert C., Brasselet E. Appl. Phys. Lett., 2014, no. 5(104).
  13. Loussert C. et al. Advanced Material, 2014, vol. 26, рр. 4242–4246.
  14. Orlova T. et al. Nat. Nanotechnol., Springer US, 2018, no. 4(13), pp. 304–308.
  15. Kim Y., Tamaoki T. ChemPhotoChem., 2019, vol. 3, рр. 284–303.
  16. Dierking I. Textures of Liquid Crystals, John Wiley & Sons, 2003.
  17. Papič M. et al. Proceedings of the National Academy of Sciences, 2021, no. 49(118), DOI:10.1073/pnas.2110839118.