ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2023-66-6-472-482

UDC 681.2-2,62-293, 53.08, 629.78

ROTARY COMPLEX FOR DYNAMIC VIBRATION TESTING OF NANOSATELLITES

A. E. Golykh
Amur State University, Laboratory of Small spacecraft of the K.E. Tsiolkovsky Scientific and Educational Center;


D. V. Fomin
Amur State University, Faculty of Engineering Physics, Scientific-Training Center; Associate Professor, Director


Read the full article 
Reference for citation: Golykh A. E., Fomin D. V. Rotary complex for dynamic vibration testing of nanosatellites. Journal of Instrument Engineering. 2023. Vol. 66, N 6. P. 472—482 (in Russian). DOI: 10.17586/0021-3454-2023-66-6-472-482.

Abstract. Dynamic vibration testing is an important component of small spacecraft ground testing program. As a rule, nanosatellites are placed on the desktop of vibration stands by means of simulators of a transport and launch container (STPC). Results of modernization of the simulator of transport-launch container statically fixed on the table of the vibrating stand, as well as of the rotary complex, which includes the modernized STPC, are presented. For both structures, model dynamic vibration studies are carried out in SolidWorks CAD. For a statically fixed STPC, the maximum amount of the resonating mass of the structure is 0,048 % over the entire range of specified frequencies, the deformations are close to zero, while for the modernized STPC with a rotary device, the resonating mass is 0,27 %, and the deformations of the nodes complex – 0,09 mm. For the base of the rotary device, static deformations are studied separately; using numerical simulation, a value of 0,057 mm is obtained, and in full-scale tests – 0,052 mm, which indicates a high factor of the structure safety. The modernized STPC with a rotary device, fixed on the table of the shaker, has a greater resonant mass and deformation than the statically fixed STPC, however, the values of these parameters lie within the acceptable limits according to GOST 30630.0.0-99 (p. 6), which allows the operation of the designed rotary complex for nanosatellites dynamic vibration testing. Application of the complex makes it possible to replace expensive vibration stands that create dynamic vibration loads in two or more independent planes, since it can be used on vibration stands that create vibrations in only one direction.
Keywords: equipment, rotary complex, nanosatellite, dynamic vibration tests, deformation

References:

1. Barulina M.A., Fomin D.V., Golikov A.V. et al. AIP Conf. Proc., 2022, vol. 2647, рр. 020022,
https://doi.org/10.1063/5.0104328.
2. Fomin D.V., Strukov D.O., German A.S. Journal of Instrument Engineering, 2018, no. 5(61), pp. 446–449, DOI:
10.17586/0021-3454-2018-61-5-446-449. (in Russ.)
3. Levchenko A.S. Rocket-Space Device Engineering and Information Systems, 2020, no. 4(7), pp. 67–75, DOI:
10.30894/issn2409-0239.2020.7.4.74.82. (in Russ.)
4. Kozochkin M.P., Porvatov A.N., Sabirov F.S. Measurement Techniques, 2014, no. 12(56), pp. 1414–1420, DOI:
10.1007/s11018-014-0393-4.
5. Patent RU211274U1, Imitator transportno-puskovogo konteynera dlya povedeniya vibrodinamicheskikh ispytaniy
sputnikov standarta CubeSat 1U-3U (Simulator of the Transport and Launch Container for the Behavior of Vibration-
Dynamic Tests of Satellites of the CubeSat 1U-3U Standard), D.V. Fomin, A.E. Golykh, Priority 2021-12-29, Published
2022-05-30. (in Russ.)
6. Patent RU2758161C1, Universal'nyy imitator transportno-puskovogo konteynera dlya povedeniya
vibrodinamicheskikh ispytaniy sputnikov standarta CubeSat (Universal Simulator of Transport and Launch Container
for Conducting Vibrodynamic Tests of Cubesat Standard Satellites), D.V. Fomin, D.S. Tarasov, Priority 2021-03-22,
Published 2021-10-26. (in Russ.)
7. Patent SU 1556302 A1, Sposob vibroispytaniy izdeliya (Method of Vibration Tests of Article), Yu.G. Karpov,
V.V. Bayrak, Patent application no., Priority 1987-02-17, Published 1996-02-27. (in Russ.)
8. Patent RU2796176C1, Povorotnoye ustroystvo imitatora transportno-puskovogo konteynera sputnika CubeSat 1-3U
(Rotary Device of Cubesat 1-3u Satellite Transport and Launch Container Simulator), D.V. Fomin, A.E. Golykh, Patent
application no. 2022134380, Priority 27.12.2022, Published 17.05.2023, Bulletin 14. (in Russ.)
9. Fomin D.V., Barulina M.A., Golikov A.V., Strukov D.O., German A.S., Ogorodnikov A.A. Vestnik of Samara University.
Aerospace and Mechanical Engineering, 2021, no. 2(20), pp. 74–82, DOI 10.18287/2541-7533-2021-20-2-74-82.
(in Russ.)
10. Igolkin A.A., Safin A.I., Filipov A.G. Reshetnev readings, 2018, vol. 1, рр. 117–118. (in Russ.)
11. Danilin A.N., Kurbatov A.S., Zhavoronok S.I. International Journal for Computational Civil and Structural Engineering,
2020, no. 4(16), pp. 29–37, DOI 10.22337/2587-9618-2020-16-4-29-37.
12. Lee R.I., Mironenko A.V. Vse materialy. Entsiklopedicheskiy spravochnik (All Materials. Encyclopedic Reference),
2017, no. 9, pp. 67–70. (in Russ.)
13. Malinin G.V. Trudy MAI, 2021, no. 121, DOI: 10.34759/trd-2021-121-08. (in Russ.)
14. Inkin I.V., Kaputkina L.M., Savelyev A.M. et al. Metals, 2004, no. 3, pp. 34–45. (in Russ.)
15. Burns V.A., Zhukov E.P., Lakiza P.A., Lysenko E.A. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty),
2019, no. 2(21), pp. 26–39, DOI 10.17212/1994-6309-2019-21.2-26-39. (in Russ.)