ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2023-66-6-483-488

UDC 620.194.2

MODELING THE REINFORCEMENT CORROSION PROCESS IN REINFORCED CONCRETE STRUCTURE AT THE OBJECT OF TRANSPORT INFRASTRUCTURE

A. G. Korobeynikov
Saint Petersburg Branch Organization of the Russian Academy of Sciences “Institute of Earth Magnetism, Ionosphere and Radio waves named after N.V. Pushkov RAS”;ITMO University, Saint Petersburg, 197101, Russian Federation ; Deputy Director for Science


V. L. Tkalich
ITMO University; Professor


O. I. Pirozhnikova
ITMO University; Ph.D.


Read the full article 
Reference for citation: Korobeynikov А. G., Tkalich V. L., Pirozhnikova О. I. Modeling the reinforcement corrosion process in reinforced concrete structure at the object of transport infrastructure. Journal of Instrument Engineering. 2023. Vol. 66, N 6. P. 483—488 (in Russian). DOI: 10.17586/0021-3454-2023-66-6-483-488.

Abstract. To predict the safe state of reinforced concrete structures at transport infrastructure facilities, information on directions of crack opening in such structures is of principle importance. The cracks appearance is due to formation and increase in the amount of hydrated iron oxide (iron hydroxide) on the reinforcing bars, that is, caused by corrosion processes. Particularly dangerous are cases when reinforced concrete structures are manufactured in violation of the requirements. The paper considers a case of using steel reinforcement pins of different diameters. The presented results of calculations obtained using mathematical modeling of the nonlinear behavior of corrosion processes and the resulting deformation and structural destruction of concrete show the model forms and direction of crack opening.
Keywords: reinforcement, deformation, reinforced concrete structure, corrosion, mathematical modeling, Nernst–Planck equation, crack, physical and chemical reactions

References:

1. Vasil'yev A.I. Beton i zhelezobeton, 2000, no. 2, pp. 20–23. (in Russ.)
2. Likhachev V.A., Glushkov E.D. Korroziya i zashchita stroitel'nykh konstruktsiy (Corrosion and Protection of Building
Structures), Kirov, 2012, 96 р. (in Russ.)
3. Rossina N.G., Popov N.A., Zhilyakova M.A., Korelin A.V. Korroziya i zashchita metallov. V 2 chastyakh Chast' 1.
Metody issledovaniy korrozionnykh protsessov (Corrosion and Protection of Metals. In 2 parts Part 1. Methods for
Studying Corrosion Processes), Yekaterinburg, 2019, 108 р., https://elar.urfu.ru/bitstream/10995/68495/1/978-5-7996-2578-8_2019.pdf. (in Russ.)
4. Polak A.F. Modelirovaniye korrozii zhelezobetona i prognozirovaniye yego dolgovechnosti. Itogi nauki i tekhniki
Korroziya i zashita ot korrozii. Tom XI (Modeling Corrosion of Reinforced Concrete and Predicting Its Durability. In:
Results of Science and Technology Corrosion and Protection Against Corrosion. Volume XI) Moscow, 1986,
рр. 136–180. (in Russ.)
5. Polak A.F. Fiziko-khimicheskiye osnovy korrozii zhelezobetona (Physical and Chemical Bases of Reinforced Concrete
Corrosion), Ufa, 1982, 76 р. (in Russ.)
6. Benin A.V., Nevzorov N.I. Structural mechanics of engineering structures and facilities, 2007, no. 3, pp. 48–52. (in
Russ.)
7. Tournassat C., Steefel C.I., & Gimmi T. Water Resources Research, 2020, vol. 56, art. 2019WR026832,
https://doi.org/10.1029/2019WR026832.
8. Demirchyan K.S., Neiman L.R., Korovkin N.V., Chechurin V.L. Teoreticheskiye osnovy elektrotekhniki. Tom 1 (Theoretical
Foundations of Electrical Engineering. Volume 1), St. Petersburg, 2003, 463 р. https://portal.tpu.ru/
SHARED/k/KOLGANOVAJULIA/academics/Tab7/Tab2/%D0%A2%D0%9E%D0%AD%20%D1%87.1.pdf. (in Russ.)
9. Grishentsev A.Yu., Korobeinikov A.G. Journal of Radio Electronics, 2016, no. 5, pp. 9. (in Russ.)
10. Korobeinikov A.G., Grishentsev A.Yu., Svyatkina M.N. Cybernetics and programming, 2013, no. 3, pp. 9–20. (in
Russ.)
11. Korobeynikov A.G., Grishentsev A.Y., Velichko E.N., Aleksanin S.A., Fedosovskii M.E., Bondarenko I.B., Korikov
C.C. Optical Memory & Neural Networks (Information Optics), 2016, no. 3(25), pp. 184–191.