ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-6-489-500

UDC 681.785.35, 537.86.029.65/.79, 535.55

MILLIMETER-RANGE ELLIPSOMETRY IN PROBLEMS OF COMPOSITE MATERIALS DIAGNOSTICS

V. N. Fedorinin
Design and Technology Institute of Applied Microelectronics, Branch of the Institute of Semiconductor Physics; Head of the Branch


S. A. Kuznetsov
Rzhanov Institute of Semiconductor Physics of the SB RAS, Design and Technology Institute of Applied Microelectronics;


V. A. Shvets
Institute of Semiconductor physics, Siberian Branch, Russian Academy of Sciences, Department of Physics;


A. V. Arzhannikov
Novosibirsk State University, Department of Plasma Physics; Chief Researcher


A. V. Gelfand
Rzhanov Institute of Semiconductor Physics of the SB RAS, Design and Technology Institute of Applied Microelectronics, Department of Photochemical Technologies; Head of the Department


A. Y. Gorshkov
Rzhanov Institute of Semiconductor Physics of the SB RAS, Design and Technology Institute of Applied Microelectronics; Leading Design Engineer


Read the full article 
Reference for citation: Fedorinin V. N., Kuznetsov S. A., Shvets V. А., Arzhannikov А. V., Gelfand А. V., Gorshkov А. Yu. Millimeter-range ellipsometry in problems of composite materials diagnostics. Journal of Instrument Engineering. 2023. Vol. 66, N 6. P. 489—500 (in Russian). DOI: 10.17586/0021-3454-2023-66-6-489-500.

Abstract. Ellipsometry is an effective tool for measuring the optical constants and structural parameters of the surface – the interface between media, studying the physical and chemical processes occurring on the surface. The purpose of the work is to create a working layout of a millimeter-range ellipsometer optimized for a frequency of 140 GHz. In creation of the millimeter-wave ellipsometer, original quasi-optical elements developed earlier are used - linear and circular polarizers, made in the form of thin-film polymer-based metasurfaces. Experimental studies of quasi-optical elements characteristics and methodological errors due to the "imperfection" of the elements are carried out. The results of measurements of the optical constants of composite materials based on carbon fibers in the range of 140 GHz are presented. An ellipsometric experiment is performed to detect internal defects in composite products. The results of the study make it possible to conclude that millimeter-range ellipsometry may be used successfully in solving problems of surface engineering in the study of micro-heterogeneous dispersion systems.
Keywords: ellipsometry, quasi-optical elements, metasurface, composite material, microdispersion medium

References:

1. Azzam R.M.A., Bashara N.M. Ellipsometry and Polarized Light, North-Holland Publishing Company, 1977, 529 р.
2. Svitashev K.K., Semenenko A.I., Semenenko L.I., Sokolov V.K. Osnovy ellipsometrii (Fundamentals of
Ellipsometry), Novosibirsk, 1979, 422 р. (in Russ.)
3. Vasil'yev V.V., Protasov V.D., Bolotin V.V. et al. Kompozitsionnyye materialy (Composite Materials), Moscow, 1990,
512 р. (in Russ.)
4. Bataev A.A., Bataev V.A. Kompozitsionnyye materialy: stroyeniye, polucheniye, primeneniye (Composite Materials:
Structure, Production, Application), Novosibirsk, 2002, 384 р. (in Russ.)
5. Dalin M.A., Generalov A.S., Boychuk A.S., Lozhkova D.S. Aviation Materials and Technologies, 2013, no. 1, pp. 64–69.
(in Russ.)
6. Dalin M.A., Lozhkova D.S. Polymer Science. Series D. Glues and Sealing Materials, 2012, no. 5, рр. 305–308.
7. Hofmann T.C., Herzinger A., Boosalis T., Tiwald J.A. Rev. Sci. Instrum., 2010, no. 2(81), pp. 023101.
8. Matsumoto N., Hosokura T., Nagashima T., Hangyo M. Optics Letters, 2011, no. 2(36), pp. 265–267.
9. Neshat M., Armitage N.P. Optics Express, 2012, no. 27(20), pp. 29063–29075.
10. Azarov I.A., Shvets V.A., Prokopiev V.Y., Dulin S.A., Rykhlitskii S.V., Kruchinin V.N., Choporova Y.Y., Knyazev B.A.,
Kruchinina M.V. Instruments and Experimental Techniques, 2015, no. 3(58), pp. 381–388.
11. Kühne P., Armakavicius N., Stanishev V., Herzinger C.M., Schubert M. and Darakchieva V. IEEE Transactions on
Terahertz Science and Technology, 2018, no. 3(8), pp. 257–270.
12. Azarov I.A., Choporova Y.Yu., Shvets V.A., Knyazev B.A. Journal of Infrared, Millimeter, and Terahertz Waves,
2019, no. 2(40), pp. 200–209.
13. THz sources of TeraSense Group, Inc., https://terasense.com/products/terahertz-sources/.
14. Kuznetsov S.A., Arzhannikov A.V., Kubarev V.V., Kalinin P.V., Sorolla M., Navarro-Cia M., Aznabet M., Beruete M.,
Falcone F., Goncharov Yu.G., Gorshunov B.P., Gelfand A.V., Fedorinina N.I. Key Eng. Mat., 2010, vol. 437,
рр. 276–280.
15. Mamrashev A.A., Nikolaev N.A., Kuznetsov S.A., Gelfand A.V. Proc. V Intern. Conf. on Metamaterials and
Nanophotonics (METANANO-2020), St. Petersburg, Russia, September 14–18, 2020, AIP Conf. Proc., vol. 2300,
art. no. 020083.
16. Kostenko A.A. Microwave Opt. Technol. Lett., 1998, no. 6(19), pp. 438–444.
17. Baena J.D., del Risco J.P., Slobozhanyuk A.P., Glybovski S.B., and Belov P.A. Phys. Rev. B, Condens. Matter.,
2015, vol. 92, рр. 245413.
18. Sayanskiy A., Kuznetsov S.A., Tanygina D.S., del Risco J.P., Glybovski S., Baena J.D. IEEE Transactions on Antennas
and Propagation, 2020, no. 3(68), pp. 1491–1502.
19. Kozlov G.V., Volkov V.V. Millimeter and Submillimeter Wave Spectroscopy of Solids, Berlin; Heidelberg, Springer-
Verlag, 1998, Topics in Applied Physics, vol. 74, рр. 51–109.
20. Lamb J.W. Intern. Journal of Infrared and Millimeter Waves, 1996, no. 12(17), pp. 1997–2034.
21. Kovalenko N.A., Olegin I.P., Gotselyuk T.B., Chaplygin V.N., Petrov P.M. Obrabotka metallov (tekhnologiya,
oborudovaniye, instrumenty, materialovedeniye), 2014, no. 1(62), pp. 69–75. (in Russ.)
22. Bespalov V.A., Glebova M.A., Gotselyuk T.B., Grishin V.I. Mekhanika kompozitsionnykh materialov i konstruktsii,
2014, no. 1(20), pp. 58–86. (in Russ.)