DOI 10.17586/0021-3454-2023-66-8-660-670
UDC 531.383
GRAPHICAL-ANALYTICAL METHOD FOR OPTIMAL SYNTHESIS OF PENDULUM CORRECTION CONTOUR OF VERTICAL GYROS
A. N. Tupolev Kazan National Research Technical University, Department of Automation and Control;
S. V. Krivosheev
A. N. Tupolev Kazan National Research Technical University, Department of Automation and Control; E-mail: ; Associate Professor
Read the full article
Reference for citation: Lukin K. O., Krivosheev S. V. Graphical-analytical method for optimal synthesis of pendulum correction contour of vertical gyros. Journal of Instrument Engineering. 2023. Vol. 66, N 8. P. 660—670 (in Russian). DOI: 10.17586/0021-3454-2023-66-8-660-670.
Abstract. A graphical-analytical method of optimal synthesis of pendulum (positional) correction contour for gyroscopic verticals on a movable base is presented, the model of the gyro is reduced to a complementary filter. The variance of the complementary filter error is used as an optimality criterion. Characteristics of the gyroscope drift in the form of white noise and zero instability are determined from the Allan variation, and the satellite errors are determined from the spectral power density of horizontal acceleration, determined with the account for assumed operating conditions. Determination of the optimal correction time constant and the maximum permissible gyroscope drift parameter at a given gyro accuracy, taking into account the moving object dynamics, is carried out using a specially formed graph with the axes "correction time constant — gyro drift parameter". The proposed method can be used for both analytical and power vertical gyros.
Abstract. A graphical-analytical method of optimal synthesis of pendulum (positional) correction contour for gyroscopic verticals on a movable base is presented, the model of the gyro is reduced to a complementary filter. The variance of the complementary filter error is used as an optimality criterion. Characteristics of the gyroscope drift in the form of white noise and zero instability are determined from the Allan variation, and the satellite errors are determined from the spectral power density of horizontal acceleration, determined with the account for assumed operating conditions. Determination of the optimal correction time constant and the maximum permissible gyroscope drift parameter at a given gyro accuracy, taking into account the moving object dynamics, is carried out using a specially formed graph with the axes "correction time constant — gyro drift parameter". The proposed method can be used for both analytical and power vertical gyros.
Keywords: complexing, complementary filter, vertical gyro, pendulum correction, optimal synthesis, gyro, pendulum sensitive element, accelerometer
References:
References:
- Mahony R., Hamel T., Pflimlin J.-M. IEEE Trans. on Automatic Control, 2008, no. 5(53), pp. 1203–1218, DOI: 10.1109/TAC.2008.923738.
- Valenti R.G., Dryanovski I., Xiao J. Sensors, 2015, no. 8(15), pp. 19302–19330, DOI: 10.3390/s150819302.
- Kang D., Jang C., Park F.C. IEEE/ASME Trans. on Mechatronics, 2019, no. 1(24), pp. 350–360, DOI: 10.1109/TMECH.2019.2891776.
- Sabatini A.M. Sensors, 2011, no. 10(11), pp. 9182–9206, DOI: 10.3390/s111009182.
- Ammar A., Khalaf W., Chouaib I. Gyroscopy and Navigation, 2019, no. 3(10), pp. 131–146.
- Madgwick S.O.H., Harrison A.J.L., Vaidyanathan R. IEEE Intern. Conf. on Rehabilitation Robotics, Switzerland, Zurich, 2011, рр. 1–7, DOI: 10.1109/ICORR.2011.5975346.
- Brown R.G., Hwang P.Y.C. Introduction to random signals and applied Kalman filtering, John Wiley & Sons, 1997.
- Matveev V.V. News of the Tula State University. Technical sciences, 2019, no. 8, pp. 153–164. (in Russ.)
- Yoo T.S., Hong S.K., Yoon H.M., Park S. Sensors, 2011, no. 4(11), pp. 3816–3830, DOI: 10.3390/s110403816.
- Kachanov B.O., Grishin D.V., Akhmedova S.K., Tuktarev N.A., Kulabukhov V.S. Gyroscopy and Navigation, 2016, no. 4(24), pp. 25–34, DOI: 10.17285/0869-7035.2016.24.4.025-034. (in Russ.)
- Poddar S., Narkhede P., Kumar V. et al. J. Intel. Robot. Syst., 2017, vol. 87, рр. 531–543, DOI: 10.1007/s10846-017-0507-8.
- Rivkin S.S. Statisticheskiy sintez giroskopicheskikh ustroystv (Statistical Synthesis of Gyroscopic Devices), Leningrad, 1970, 422 р. (in Russ.)
- Al Mansour M., Chouaib I., Jafar A., Potapov A.A. Gyroscopy and Navigation, 2019, no. 2(10), pp. 77–89.
- Patent RU 2253091, Sposob korrektsii analiticheskikh girovertikaley usechennogo sostava (A Method for Correcting Analytical Gyro-Verticals with a Truncated Composition), A.M. Boronakhin, V.I. Gupalov, A.V. Mochalov, Priority 30.12.2002, Published 27.05.2005, Bulletin 15. (in Russ.)
- Patent RU 2719241, Giroskopicheskiy mayatnik (Gyroscopic Pendulum), S.V. Krivosheev, K.O. Lukin, Priority 13.06.2019, Published 17.04.2020, Bulletin 11. (in Russ.)
- Besekersky V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems), Moscow, 1966, 992 р. (in Russ.)
- IEEE Std 952-2020. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros, 2020, DOI: 10.1109/IEEESTD.2021.9353434.
- Besekersky V.A., Fabrikant E.A. Dinamicheskiy sintez sistem giroskopicheskoy stabilizatsii (Dynamic Synthesis of Gyroscopic Stabilization Systems), Leningrad, 1968, 351 р. (in Russ.)
- IEEE Std 1293-2018. IEEE Standard Specification Format Guide and Test Procedure for Linear Single-Axis, Nongyroscopic Accelerometers, 2019, DOI: 10.1109/IEEESTD.2019.8653544.