ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-8-696-703

UDC 535.338.41

METHOD FOR DETECTING A SMALL AMOUNT OF OIL CONTAMINANTS IN A LIQUID USING LASER FLUORESCENCE TECHNOLOGY

N. H. Javadov
National Aerospace Agency of Azerbaijan Republic; General Manager


H. H. Asadov
S&R Institute, Ministry of Defense Industry, Azerbaijan; Section head, Associate professor


A. E. Azizova
National Aerospace Agency of the Azerbaijan Republic; Senior Researcher


Read the full article 
Reference for citation: Javadov N.G., Asadov H. G., Azizova A. E. Method for detecting a small amount of oil contaminants in a liquid using laser fluorescence technology. Journal of Instrument Engineering. 2023. Vol. 66, N 8. P. 696—703 (in Russian). DOI: 10.17586/0021-3454-2023-66-8-696-703.

Abstract. A method for multi-cell laser-fluorescence detection of a small amount of oil pollutants in water, as well as for measuring the concentration of such pollutants in water samples is developed. A technique is proposed for adaptively setting the length of the laser beam path through liquids in samples under investigation, which makes it possible to determine both the average total contamination value for the samples and contamination in each sample. A mathematical justification is presented, an algorithm for implementing the method is compiled, and a variant of the cuvette constructing with the implementation of adaptive tuning of the length of the laser beam path through the liquid in the samples is shown.
Keywords: laser-fluorescent method, pollution, optimization, pollutant concentration, petroleum products, liquid samples

References:
  1. Cheng P., Zhu Y., Cui C., Pan J. IEEE Access, January 2022, vol.10, рр. 103733–103748, https://doi.org/10.1109/access.2022.3209179.
  2. Idris N., Gondal M.A., Lahna K., Ramli M., Sari A.M., AlDakheel R.K., Mitaphonna R., Dastageer M.A., Kurihara K., Kurniawan K.H., Almesserie M.A. Arabian J. Chem., 2022, no. 7(15), art. no. 103847, DOI:10.1016/j.arabje.2022.103847.
  3. Saito Y., Ichihara K., Morishita K., Uchiyama K., Kobayashi F., Tomida T. Environ. Pollut., Jan. 2021, vol. 269, art. no. 116150, DOI:10.1016/j.foodcont.2022.109044.
  4. Dong G., Li X., Yang R., Yang Y., Liu H., Wu N. Environ. Pollut., Jan. 2021, vol. 269, art. no. 116150, DOI:10.1016/j.envpol.2020.116150.
  5. Luo S., Yan C., Chen D. Food Control, Aug. 2022, vol. 138, art. no. 109044, DOI:10.1016/j.foodcont.2022.109044.
  6. Morales T.V., Esponda S.M., Rodriguez J.J.S., Aaron S.E., Aaron J.J. Macedonian Journal of Chemistry and Chemical Engineering, 2010, no. 1(29), pp. 1–42.
  7. Zacharioudaki D.E., Fitilis I., Kotti M. Molecules, 2022, vol. 27, рр. 4801, https://doi.org/10.3390/molecules27154801.
  8. Uebel U., Kubitz J., Anders A. J. Plant Physiol., 1996, vol. 148, pp. 586–592.
  9. Du R., Yang D., Jiang G., Song Y., Yin X. Sensors, 2020, Vol. 20, рр. 1330.
  10. Bukin O., Proschenko D., Chekhlenok A., Korovetskiy D., Bukin I., Yurchik V., Sokolova I., Nadezhkin A. Photonics, 2020, no. 2(7), pp. 36.
  11. Yu J., Zhang X., Hou D., Chen F., Mao T., Huang P., Zhang G. Journal of Spectroscopy, 2017, no. 1, pp. 1–9. DOI:10.1155/2017/1485048.
  12. Yu J., Cao Y., Shi F., Shi J., Hou D., Huang P., Zhang G., Zhang H. Water, 2021, vol. 13, рр. 2633, https://doi.org/10.3390/w13192633.
  13. Song W. Sensors, 2022, vol. 2022, art. ID 2936960, https://doi.org/10.1155/2022/2936960.
  14. Gu Y., Zuo Z., Shi C., Hu X. Appl. Sci., 2020, no. 3(10), pp. 1103, DOI:10.3390/app10031103.
  15. Elgolts L.E. Differentsial'nyye uravneniya i variatsionnye ischisleniya (Differential Equations and Calculus of Variations), Moscow, 1974, 432 р. (in Russ.)