ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-9-789-797

UDC 621.373.8

FORMATION OF HIGH-ASPECT-RATIO CHANNELS OF SUBMILLIMETER DIAMETER IN POLYMETHYL METHACRYLATE BY CO AND CO2 LASERS RADIATION

.
P. N. Lebedev Physical Institute of the RAS, Gas Lasers Lab; Director of Department


M. V. Ionin
P. N. Lebedev Physical Institute of the RAS, Gas Lasers Lab; Junior Researcher;


Y. M. Klimachev
P. N. Lebedev Physical Institute of the RAS, Gas Lasers Lab; Senior Researcher


A. Y. Kozlov
P. N. Lebedev Physical Institute of the RAS, Gas Lasers Lab ; Senior Researcher


D. V. Sinitsyn
P. N. Lebedev Physical Institute of the RAS, Gas Lasers Lab; Leading Researcher


O. A. Rulev
P. N. Lebedev Physical Institute of the RAS, Gas Lasers Lab; Junior Researcher

Reference for citation: Ionin A. A., Ionin M. V., Klimachev Yu. M., Kozlov A. Yu., Sinitsyn D. V., Rulev O. A. Formation of high-aspect-ratio channels of submillimeter diameter in polymethyl methacrylate by CO and CO2 lasers radiation. Journal of Instrument Engineering. 2023. Vol. 66, N 9. P. 789—797 (in Russian). DOI: 10.17586/0021-3454-2023-66-9-789-797.

Abstract. Results of experiments on the formation of submillimeter-diameter channels with a large aspect ratio (~100) in polymethyl methacrylate due to selected laser beam focusing parameters and the average power of a high-frequency pumped CO laser are presented. A comparative analysis of the possibilities of forming channels in polymethyl methacrylate using radiation from CO and CO2 lasers with high-frequency pumping is performed. Submillimeter channels with high aspect ratio can be used to create microfluidic chips.
Keywords: CO laser, CO2 laser, PMMA, high aspect ratio channels, mid-IR

References:
  1. Borisovskaya E.M., Karmanova O.V., Shcherbakova M.S., Kalmikov V.V. Proceedings of the Voronezh State University of Engineering Technologies, 2017, no. 1(79), pp. 264–270. (in Russ.)
  2. Borzenok S.A., Malyugin B.E., Izmaylova S.B. et al. Fyodorov journal of ophthalmic, 2016, no. 4, pp. 16–19. (in Russ.)
  3. Evstrapov А.А. Russian Journal of General Chemistry, 2011, no. 2(LV), pp. 99–110. (in Russ.)
  4. Mark D., Haeberle S., Roth G., von Stetten F., Zengerle R.. Chemical Society Reviews, 2010, no. 3(39), pp. 1153–1182.
  5. Klank H., Kutter J.P., Geschke O. Lab Chip, 2002, vol. 2, рp. 242.
  6. Löhr C., La Fé-Perdomo I., Ramos-Grez J.A., Calvo J. Optics & Laser Technology, 2021, vol. 144, pр. 107386.
  7. Prakash S., Kumar S. Optics & Laser Technology, 2021, vol. 139, рp. 107017.
  8. Tokarev V.N. Quantum Electronics, 2006, no. 7(36), pp. 624–637. https://doi.org/10.1070/ QE2006v036n07ABEH013181.
  9. Bo Xia, Lan Jiang, Xiaowei Li, Xueliang Yan, Weiwei Zhao, Yongfeng Lu. Appl. Phys. A, 2014, no. 1(119), pp. 61–68.
  10. Ionin A.A., Klimachev Yu.M., Kotkov A.A. et al. Infrared Physics & Technology, 2022, vol. 120, рр. 103921.
  11. Mineev A.P., Nefedov S.M., Pashinin P.P. Quantum Electronics, 2006, no. 7(36), pp. 656–663. https://doi.org/10.1070/QE2006v036n07ABEH013201.
  12. Dutov A.I., Kuleshov A.A., Novoselov N.A., Semenov V.E., Sokolov A.A. Proc. SPIE, XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, 2003, vol. 5120, рр. 84–86, DOI: 10.1117/12.515476.
  13. Ionin A.A., Kozlov A.Yu., Seleznev L.V., Sinitsyn D.V. Kompaktnyy kriogennyy shchelevoy SO-lazer s nakachkoy yemkostnym VCH-razryadom (Compact Cryogenic Slab CO Laser Pumped by a Capacitive RF Discharge), Preprint FIAN, 2008, no. 1. (in Russ.)