ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-11-968-981

UDC 51-76

CREATING CONTRAST-SUPPRESSED ABDOMINAL AORTA CT DATASETS FOR TRAINING AND TESTING ARTIFICIAL INTELLIGENCE ALGORITHMS

M. R. Kodenko
Bauman Moscow State Technical University, Department of Biomedical Technical Systems; Center for Diagnostics and Telemedicine Technologies, Department of Medical Research; Junior Researcher ;


A. V. Samorodov
Bauman Moscow State Technical University, Department of Biomedical Technical Systems ; Head of the Department


N. S. Kulberg
Federal Research Center “Computer Science and Control” of the RAS, Department 41; Senior Researcher


R. V. Reshetnikov
Center for Diagnostics and Telemedicine Technologies, Department of Medical Research; Head of the Department

Reference for citation: Kodenko M. R., Samorodov A. V., Kulberg N. S., Reshetnikov R. V. Creating contrast-suppressed abdominal aorta CT datasets for training and testing artificial intelligence algorithms. Journal of Instrument Engineering. 2023. Vol. 66, N 11. P. 968—981 (in Russian). DOI: 10.17586/0021-3454-2023-66-11-968-981.

Abstract. An approach to the automated acquisition of non-contrast computed tomography (CT) images containing abdominal aortic markings derived from contrast-enhanced phase scanning data is presented. An algorithm for suppressing contrast enhancement in the area of the abdominal aorta on a CT image is developed. The scientific novelty of the approach lies in the conversion of marked contrast images into non-contrast images using a developed mathematical model that allows for isolation and suppression of the component of X-ray absorption of the contrast agent. The algorithm was tested on an open data set consisting of 4 CT studies of the abdominal aorta, the balance of “aneurysm: normal” classes was 1:1. The results demonstrate the comparability of the X-ray density values in the study area with literature data, as well as the similarity of this area with the surrounding muscle tissue. Expert classification of a mixed sample containing real and generated images demonstrates the realism of the latter (accuracy of detection of artificial images - 35%, Fleiss kappa - 0.12). The resulting images are intended for training and testing artificial intelligence algorithms in the field of opportunistic screening of aortic aneurysm.
Keywords: computed tomography, image processing, training datasets, artificial intelligence, synthetic non-contrast phase

Acknowledgement: The work was carried out within the framework of research and development (EGISU No.: 123031500002-1) in accordance with Order No. 1196 dated December 21, 2022 “On approval of government tasks, the financial support of which is carried out from the budget of the city of Moscow, to state budgetary (autonomous) institutions, subordinate to the Moscow City Health Department, for 2023 and the planning period of 2024 and 2025". The authors express their gratitude to the staff of the Center for Diagnostics and Telemedicine Technologies, Radiologists I. A. Blokhin, A. K. Smorchkova, and A. N. Khoruzhaya for expert validation of CT images.

References:
  1. Koshino K., Werner R.A., Pomper M.G. et al. Ann. Transl. Med., 2021, no. 9(9), pp. 821–821.
  2. Engelke K., Chaudry O., Bartenschlager S. Curr. Osteoporos Rep., Springer, 2023, no. 1(21), pp. 65–76.
  3. Kodenko M.R., Vasilev Y.A., Vladzymyrskyy A.V. et al. Multidisciplinary Digital Publishing Institute, 2022, no. 12(12), pp. 3197.
  4. https://trauma.ru/content/articles/detail.php?ELEMENT_ID=45874. (in Russ.)
  5. Corson N., Sensakovic W.F., Straus C. et al. Med Phys. American Association of Physicists in Medicine, 2011, no. 2(38), pp. 942, DOI: 10.1118/1.3537610.
  6. Goodfellow I. et al. Commun. ACM. Association for Computing Machinery, 2014, no. 11(63), pp. 139–144, DOI:10.48550/arXiv.1406.2661.
  7. Litjens G. et al. Med. Image Anal., Elsevier B.V., 2017, vol. 42, рр. 60–88, DOI: 10.1016/j.media.2017.07.005.
  8. Kodali N. et al. On Convergence and Stability of GANs, 2017, DOI: 10.48550/arXiv.1705.07215.
  9. Petrovichev V.S., Neklyudova M.V., Sinitsyn V.E., Nikitin I.G. Digital Diagnostics, 2021, no. 3(2), pp. 343–355, DOI: 10.17816/DD62572. (in Russ.)
  10. Toshav A. Seminars in Ultrasound, CT and MRI, WB Saunders, 2022, no. 4 43), pp. 352–354, DOI: 10.1053/j.sult.2022.06.010.
  11. Zhao Q., Adeli E., Pohl K.M. Nature Communications, 2020, no. 1(11), pp. 1–9, DOI: 10.1038/s41467-020-19784-9.
  12. Starmans M.P.A. et al. Handbook of Medical Image Computing and Computer Assisted Intervention, Elsevier, 2019, рр. 429–456.
  13. Certificate on the state registration of the computer programs 2023661089, Programma dlya izvlecheniya i analiza determinirovannogo komponenta signala rentgenovskoy plotnosti KT-angiograficheskogo issledovaniya aorty (Program for Extracting and Analyzing the Deterministic Component of the X-ray Density Signal of a CT Angiographic Study of the Aorta), M.R. Kodenko, Yu.A. Vasiliev, Priority 19.05.2023, Published 29.05.2023, Bulletin 6. (in Russ.)
  14. Certificate on the state registration of the computer programs 2023661090, Programma dlya podavleniya kontrastirovaniya aorty na KT-angiograficheskikh izobrazheniyakh (Program for Suppressing Contrast Enhancement of the Aorta on CT Angiographic Images), M.R. Kodenko, Yu.A. Vasiliev, Priority 19.05.2023, Published 29.05.2023, Bulletin 6.
  15. Kodenko M.R., Kul'berg N.S., Samorodov A.V. Matematika. Komp'yuter. Obrazovaniye 2023 (Mathematics. Computer. Education 2023), Collection of abstracts of the XXX Intern. Conf., http://www.mce.su/rus/archive/abstracts/mce30/sect288919/doc417793/. (in Russ.)
  16. Norgeot B. et al. Nature medicine, 2020, no. 9(26), pp. 1320–1324, DOI: 10.1038/s41591-020-1041-y.
  17. https://mkb-10.com/index.php?pid=8344. (in Russ.)
  18. Robinson J. D. et al. Seminars in roentgenology, WB Saunders, 2016, no. 3(51), pp. 215–229, DOI: 10.1053/j.ro.2015.12.003.
  19. 3D Slicer image computing platform, https://www.slicer.org/.
  20. Knipe H., Moore C. Radiopaedia.org, 2019, https://radiopaedia.org/articles/72562.
  21. Haralick R. and Shapiro L. Computer and Robot Vision, Addison-Wesley Publishing Company, 1992.
  22. Uchida S. Wiley Online Library, 2013, no. 4(55), pp. 523–549, doi: 10.1111/dgd.12054.
  23. Vidar Dicom Viewer, https://povidar.ru/dicom-viewer/v3/versions.html.
  24. Kelley C.T. Iterative methods for optimization, Society for Industrial and Applied Mathematics, 1999.
  25. Emmert-Streib F., Moutari S., Dehmer M. Mathematical Foundations of Data Science Using R, De Gruyter, 2020, 414 р.
  26. Barnard R. et al. Acad. Radiol., 2019, no. 12(26), pp. 1686–1694, DOI: 10.1016/j.acra.2019.06.017.
  27. Boutin R.D. et al. American Roentgen Ray Society, 2016, no. 5(207), pp. 1046–1054, DOI: 10.2214/AJR.16.16387.
  28. RStudio Desktop – Posit, https://posit.co/download/rstudio-desktop/.
  29. RDocumentation, https://www.rdocumentation.org/packages/funtimes/versions/6.1/topics/wavk.test.
  30. Penn State Pulse, 21st Birthday, January 2001, Pennsylvania State University, http://www.sa.psu.edu/ sara/alphapulse.shtml.
  31. Mann H.B., Whitney D.R. The Annals of Mathematical Statistics, Institute of Mathematical Statistics, 1947, no. 1(18), pp. 50–60.
  32. Fleiss J.L. Psychological bulletin, 1971, no. 5(76), pp. 378.
  33. Fleiss J.L., Levin B., Paik M.C. Statistical methods for rates and proportions, NY, Wiley, 1981, vol. 1981218.
  34. Erbel R. et al. Eur. Heart. J., 2014, no. 41(35), pp. 2873–2926.
  35. Chen Y. et al. Comput. Biol. Med., 2022, vol. 144, DOI: 10.1016/j.compbiomed.2022.105382.
  36. Meijer F.J.A. et al. Insights Imaging, 2019, no. 1(10), DOI: 10.1186/s13244-019-0685-y.
  37. Kruskal W.H., Wallis W.A. J. Am. Stat. Assoc., 1952, no. 260(47), pp. 583–621.