DOI 10.17586/0021-3454-2024-67-1-33-45
UDC 629.783
ARCHITECTURE OF A FAULT-TOLERANT DISTRIBUTED CONTROL SYSTEM FOR THE SamSat-ION NANOSATELLITE
Samara University, Inter-University Department of the Space Researches; Research Laboratory 102; Engineer-Programmer
P. N. Nikolaev
Samara National Research University. Laboratory "Promising fundamental and applied space research based on nanosatellites"; senior researcher
S. V. Shafran
Samara National Research University; junior researcher
A. S. Espinoza Valles
Samara University, Inter-University Department of Space Research; Software Engineer
Read the full article
Reference for citation: Meshcheryakov V. D., Nikolaev P. N., Shafran S. V., Espinoza Valles А. S. Architecture of a fault-tolerant distributed control system for the SamSat-ION nanosatellite. Journal of Instrument Engineering. 2024. Vol. 67, N 1.
P. 33—45 (in Russian). DOI: 10.17586/0021-3454-2024-67-1-33-45.
Abstract. The key features of the architecture of a fault-tolerant distributed control system for the SamSat-ION nanosatellite are presented. One of the features of the architecture is the use of a “master/slave” approach, for which each on-board system has equivalent controllers connected to a common data bus, and each controller can act as a master on the bus and access other systems directly. Equipping the on-board computer with a dual-core controller with an asymmetric core structure allows to increase productivity - collect and store telemetry on the slave core, and execute the flight cyclogram on the master core. Information exchange between SamSat-ION nanosatellite systems is carried out using a synchronous I2C data transmission bus; all on-board systems can be controlled both from the on-board computer and from the receiver using commands from the nanosatellite flight control center, which increases the fault tolerance of SamSat-ION.
Abstract. The key features of the architecture of a fault-tolerant distributed control system for the SamSat-ION nanosatellite are presented. One of the features of the architecture is the use of a “master/slave” approach, for which each on-board system has equivalent controllers connected to a common data bus, and each controller can act as a master on the bus and access other systems directly. Equipping the on-board computer with a dual-core controller with an asymmetric core structure allows to increase productivity - collect and store telemetry on the slave core, and execute the flight cyclogram on the master core. Information exchange between SamSat-ION nanosatellite systems is carried out using a synchronous I2C data transmission bus; all on-board systems can be controlled both from the on-board computer and from the receiver using commands from the nanosatellite flight control center, which increases the fault tolerance of SamSat-ION.
Keywords: nanosatellite, fault tolerance, software architecture, multicore controllers, multicontroller systems
Acknowledgement: the research was supported by the Russian Science Foundation, grant No. 23-72-30002; https://rscf.ru/project/23-72-30002.
References:
Acknowledgement: the research was supported by the Russian Science Foundation, grant No. 23-72-30002; https://rscf.ru/project/23-72-30002.
References:
- Cappelletti C., Battistini S., Malphrus B.K., eds., CubeSat Handbook. From Mission Design to Operations, 2021, рp. 10–17, 199–219.
- Lumbwe L.T. Development of an Onboard Computer (OBC) for a CubeSat, Cape Peninsula University of Technology, 2013, рр. 1–3, 14–18.
- Roberto C., Gianluca G., Gionata B., Christian C., Riccardo M. Studies in Computational Intelligence, 2022, vol. 1088, рр. 35–48, DOI: 10.1007/978-3-031-25755-1_3.
- Shiyu W., Shengbing Z., Jihe W., Xiaoping H. Algorithms and Architectures for Parallel Processing 20th International Conference, ICA3PP 2020, NY, USA, October 2–4, 2020, Pt. II, рр. 575–586, DOI: 10.1007/s12567-020-00321-9.
- Saurabh M.R., Abhishek G., Shubham S., Kushagra A., Dhananjay M., Tanuj K. 68th Intern. Astronautical Congress (IAC), Adelaide, Australia, 2017.
- Galka A.G., Kostrov A.V., Malyshev M.S. Technical Physics, 2023, no. 1(93), pp. 81, DOI: 10.21883/TP.2023.01.55442.192-22.
- Kramlikh A.V., Lomaka I.A., Shafran S.V. 27th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2020, Proceedings, Institute of Electrical and Electronics Engineers Inc., 2020.
- Nikolaev P.N., Kudryavtsev I.A., Shafran S.V. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, no. 1(984), pp. 012022.
- Leonov A.I., Nikolaev P.N. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2022, no. 1(1215), pp. 012005.
- Kramlikh A.V., Lomaka I.A., Nikolaev P.N. IOP Conference Series: Materials Science and Engineering, 2020, vol. 862.
- Kramlikh A., Nikolaev P., Rylko D.V. 29th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2022, 2022.
- Lomaka I.A., Elisov N.A., Boltov E.A. et al. Acta Astronautica, 2022, vol. 197, рр. 179–190.
- Thambidurai P., You-keun P. Proc. of 7th Symposium on Reliable Distributed systems, 1988, рр. 93–100, DOI:10.1109/reldis.1988.25784.
- Johnson B. IEEE Micro, 1984, no. 6(4), pp. 6–21, DOI: 10.1109/MM.1984.291277.
- Dubrova E. Fault-Tolerant Design, NY, Springer, 2013, DOI:10.1007/978-1-4614-2113-9.
- Velazco R., McMorrow D., Estela J. Radiation Effects on Integrated Circuits and Systems for Space Applications, Springer International Publishing, 2019, DOI: 10.1007/978-3-030-04660-6.
- Erlank A.O., Bridges C.P. 2017 IEEE Aerospace Conference, 2017, рр. 1–12, DOI:10.1109/AERO.2017.7943732.
- Erlank A., Bridges C. Acta Astronautica, 2018, vol. 147, рр. 183–194, DOI: 10.1016/j.actaastro.2018.04.006.
- Laizans K. et al. Proc. of the Estonian Academy of Sciences, 2014, рр. 222–231, DOI:10.3176/proc.2014.2S.03.
- Praks J. et al. Acta Astronautica, 2021, vol. 187, рр. 370–383, DOI:10.1016/j.actaastro.2020.11.042.
- Samsuzzaman Md. et al. IEEE Access., 2018, vol. 6, рр. 54282–54294, DOI:10.1109/ACCESS.2018.2871209.
- Duarte R.O. et al. J. Aerosp. Technol. Manag., 2020, no. 12, DOI:10.5028/jatm.v12.1166.
- Bostan V., Martiniuc A., Secrieru N., Vărzaru V., Melnic V., Ilco V. The 12th International Conference on Electronics, Communications and Computing, Moldova, 2022.
- Fuchs C.M., Chou P., Wen X. 32nd IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019.
- Lala J.H., Harper R.E., Jaskowiak K.R. et al. Proc. IEEE/AIAA/NASA 9th Digital Avionics Systems Conf., 1990, рр. 125–132.
- Rennels D.A. Proc. IEEE, 1978, vol. 66, рр. 1255–1268.
- Chau S.N., Alkalai L., Tai A.T. et al. IEEE Trans., 1999, Reliab. 48, рр. 351–359.
- Kopetz H., Damm A., Koza C. et al. IEEE Micro 9, 1989, рр. 25–40.
- Powell D. IEEE Micro 14, 1994, рр. 36–47.
- Fayyaz M., Vladimirova T. Proc. IEEE Aerospace Conf., 2014, рр. 1–12.
- Fayyaz M., Vladimirova T., Caujolle J.M. Proc. IEEE NASA/ESA Adaptive Hardware and Systems (AHS) Conf., 2012, рр. 23–30.
- Vladimirova T., Fayyaz M. Convergence and Hybrid Information Technology, Springer, 2012, рр. 428–436.
- Ludtke D., Westerdorff., Stohlmann K. et al. Aerospace Conference, 2014, рр. 1–13.
- Eickhoff J. Onboard Computers, Onboard Software and Satellite Operations, Springer Berlin Heidelberg, 2012.
- Jalilian S. et al. Proqram mühəndisliyinin aktual elmi-praktiki problemləri I respublika konfransının materialları, 2017.
- Nannipieri P. et al. Acta Astronautica, 2020, vol. 169, рр. 206–215.
- Rathsman P. et al. Acta Astronautica, 2005, no. 2–8(57), pp. 455–468.
- Durou O. et al. Acta Astronautica, 2002, no. 9(50), pp. 547–556.
- Olive X. International Journal of Applied Mathematics and Computer Science, 2012, no. 1(22), pp. 99–107.
- Girard A., Provost A., Nodet J., Desmet P., Cossard P. Proc. of the International SpaceWire Conference, St. Petersburg, Russia, 2010.
- Rakow G.P., Schmirr R., Dailey C.L., Shakoorzadeh K. 2003 IEEE Aerospace Conference Proceedings, 2003.
- Josset J.L. et al. Astrobiology, 2017, no. 6–7(17), pp. 595–611.
- Makarov A.P., Solov'yev V.A. Trudy Mezhdunarodnogo simpoziuma "Nadezhnost' i kachestvo" (Proceedings of the International Symposium “Reliability and Quality”). 2018, vol. 1. (in Russ.)
- Zhadnov V.V., Lazarev D.V. Trudy Mezhdunarodnogo simpoziuma "Nadezhnost' i kachestvo" (Proceedings of the International Symposium “Reliability and Quality”), 2005. (in Russ.)
- Warsaw University of Technology PW-SAT 2 Preliminary Requirements Review: On-board computer, 2014.
- Chen L.W., Huang T.C., Juang J.C. Presentation at 10th IAA Symposium on Small Satellites for Earth Observation, 2015.
- Selčan D., Kirbiš G., Kramberger I. Acta Astronautica, 2017, vol. 131, рр. 131–144.
- Yang M. et al. Chinese Journal of Aeronautics, 2012, no. 5(25), pp. 725–738.
- Ghosh S., Melhem R., Mosse D. IEEE Trans. Parallel Distrib. Syst., 1997, vol. 8, рр. 272–284, DOI: 10.1109/71.584093.
- Wang S. et al. J. Grid Comput., 2017, vol. 15, рр. 23–39, DOI: 10.1007/s10723-016-9386-7.
- Haque M.A., Aydin H., Zhu D. IEEE Trans. Parallel Distrib. Syst., 2017, no. 3(28), pp. 813–825, DOI: 10.1109/TPDS.2016.2600595.
- Mei J. et al. J. Grid Comput., 2015, no. 4(13), pp. 507–525,DOI: 10.1007/s10723-015-9331-1
- Hasan M., Goraya M.S. 2015 International Conference on Signal Processing, Computing and Control (ISPCC), 2015, рр. 155–158, DOI: 10.1109/ISPCC.2015.7375016.
- Naithani A., Eyerman S., Eeckhout L. IEEE Trans. Comput., 2018, no. 6(67), pp. 830–846, DOI: 10.1109/TC.2017.2779480.
- Baumann R.C. IEEE Transactions on Device and Materials Reliability, 2005, no. 3(5), pp. 305–316.
- Singh M. International Conference on Computing, Communication and Automation (ICCCA), 2017, рр. 859–863, DOI: 10.1109/CCAA.2017.8229916.
- Goloubeva O., Rebaudengo M., Reorda M.S., Violante M. Software-Implemented Hardware Fault Tolerance, Springer, 2006, DOI: 10.1007/0-387-32937-4.
- Norris J.R. Markov Chains, NY, Cambridge University Press,1998.