ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-2-107-115

UDC 519.725

FORMATION OF SETS OF FIVE-FOLD GOLD-TYPE SEQUENCES FOR DIGITAL INFORMATION TRANSMISSION SYSTEMS

V. G. Starodubtsev
Multiservice Nets and Telecommunications, Ltd., St. Petersburg; Head of Department


V. V. Tkachenko
A. F. Mozhaisky Military Space Academy;

Reference for citation: Starodubtsev V. G., Tkachenko V. V. Formation of sets of five-fold Gold-type sequences for digital information transmission systems. Journal of Instrument Engineering. 2024. Vol. 67, N 2. P. 107—115 (in Russian). DOI: 10.17586/0021-3454-2024-67-2-107-115.

Abstract. Sets of vectors of decimation indices IS = (id1, id2, …, idn) for the formation of sets of five-fold Gold-type sequences in finite fields GF(5S) (S = 3, 4, 5, 6) based on М- sequences with verification polynomials hМП(x) for periods N = 5S – 1 < 20 000, are presented. The sets include both the well–known decimation indices obtained by Trachtenberg, Helleset, Kumar and satisfying the condition LCD(idi, 5S – 1) = 1 (LCD is the largest common divisor), and the newly found indices that allow the formation of sets of five-fold Gold-type sequences with volumes VS = N + 1 and low levels of periodic auto- and the cross-correlation functions. For the considered values of S, boundary estimates of the maximum value of the correlation function modulus Rmax are given.
Keywords: finite fields, Gold sequences, correlation function, M-sequences, decimation indices

References:
  1. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
  2. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
  3. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge University Press, 2005, 438 p.
  4. Yang Y., Tang X. IEEE Trans. Inf. Theory, 2018, no. 1(64), pp. 384.
  5. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)
  6. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.
  7. Trachtenberg H.M. On the cross-correlation functions of maximal recurring sequences, Candidate’s thesis, Univ. Southern California, Los Angeles, CA, 1970.
  8. Dobbertin H., Helleseth T., Kumar P.V., Martinsen H. IEEE Trans. Inf. Theory, 2001, no. 4(47), pp. 1473.
  9. Starodubtsev V.G., Myshko V.V. Journal of Instrument Engineering, 2023, no. 7(66), pp. 568–575. (in Russ.)
  10. Muller E.N. IEEE Trans. Inf. Theory, 1999, no. 1(45), pp. 289.
  11. Hu Z., Li X., Mills D., Muller E., Sun W., Williems W., Yang Y., Zhang Z. Applicable Algebra Eng. Commun. Comput., 2001, vol. 12, p. 255.
  12. Seo E.Y., Kim Y.S., No J.S., Shin D.J. IEEE Trans. Inf. Theory, 2008, no. 7(54), pp. 3140.
  13. Seo E.Y., Kim Y.S., No J.S., Shin D.J. IEICE Trans. Fund. Electron., Commun. Comput. Sci., 2007, no. 11(E90-A), pp. 2568.
  14. Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.