ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-3-268-275

UDC УДК 681.787

EXPERIMENTAL DETERMINATION OF AN OBJECT DISPLACEMENT MAGNITUDE IN THE INSTALLATION PLANE USING THE HOLOGRAPHIC INTERFEROMETRY METHOD

E. E. Majorov
Saint-Petersburg state university of aerospace instrumentation; Associate professor


V. V. Kurlov
St. Petersburg State University of Aerospace Instrumentation, Department of Innovation and Integrated Quality Systems;


Y. M. Borodyansky
The Bonch-Bruevich St. Petersburg State University of Telecommunications, Department of Information Systems Security;


A. V. Dagaev
Ivangorod Humanitarian and Technical Institute, Branch of St. Petersburg State University of Aerospace Instrumentation, Department of Mathematics, Informatics and Information Customs Technologies; Associate Professor


I. S. Tayurskaya
St. Petersburg University of Management Technologies and Economics, Department of Information Technologies and Mathematics;

Reference for citation: Maiorov E. E., Kurlov V. V., Borodyansky Yu. M., Dagaev A. V., Tayurskaya I. S. Experimental determination of an object displacement magnitude in the installation plane using the holographic interferometry method. Journal of Instrument Engineering. 2024. Vol. 67, N 3. P. 268—275 (in Russian). DOI: 10.17586/0021-3454-2024-67-3-268-275.

Abstract. The features of the functioning of an experimental setup based on application of two-frequency laser radiation using the method of two exposures of holographic interferometry are studied. The installation is intended to determine the amount of movement of an object along the OX axis in the plane of its installation. The holographic interferometry method ensures long-term storage of information on photo carriers, allows for maximum contrast of the interference pattern and high-quality reconstruction of wave fronts. The appearance, optical design and technical characteristics of the experimental setup are presented. Expressions are obtained to determine an object displacement magnitude and measurement
Keywords: когерентная оптика, голографическая интерферометрия, длина волны излучения, апертура, погрешность измерения, волновой фронт, поляризационный светоделитель, коллиматор

Acknowledgement: coherent optics, holographic interferometry, radiation wavelength, aperture, measurement error, wavefront, polarization beam splitter, collimator

References:
  1. Ostrovsky Yu.I., Butusov M.M., Ostrovskaya G.V. Golograficheskaya interferometriya (Holographic Interferometry), Moscow, 1977, 340 р. (in Russ.)
  2. Ostrovsky Yu.I., Shchepinov V.P., Yakovlev V.V. Golograficheskiye interferentsionnyye metody izmereniya deformatsiy (Holographic Interference Methods for Strain Measurement), Moscow, 1988, 248 р. (in Russ.)
  3. Kolomiytsev Yu.V. Interferometry (Interferometers), Leningrad, 1976, 296р. (in Russ.)
  4. Kotov I.R., Mayorova O.V., Prokopenko V.T. Journal of Instrument Engineering, 2010, no. 4(53), pp. 32–34. (in Russ.)
  5. Vest Ch.M. Holographic Interferometry, NY, Wiley, 1979.
  6. Malacara D., ed., Optical Shop Testing, Wiley-Interscience, A John Wiley & Sons, Inc., 2007.
  7. Maiorov E.E., Borodyansky Y.M., Guliyev R.B., Dagaev A.V., Kurlov V.V., Tayurskaya I.S. Nauchnoe Priborostroenie, 2023, no. 1(33), pp. 43–53. (in Russ.)
  8. Maiorov E.E., Arefiev A.V., Borodyansky Yu.M., Guliyev R.B., Dagaev A.V., Pushkina V.P. Journal of Instrument Engineering, 2023, no. 4(66), pp. 313–319, DOI: 10.17586/0021-3454-2023-66-4-313-319. (in Russ.)
  9. Maiorov E.E. Modelirovaniye i situatsionnoye upravleniye kachestvom slozhnykh sistem (Modeling and Situational Quality Management of Complex Systems), Collection of Reports of the Fourth All-Russian Scientific Conference, St. Petersburg, April 18–22, 2023, рр. 56–60. (in Russ.)
  10. Maiorov E.E. Modelirovaniye i situatsionnoye upravleniye kachestvom slozhnykh sistem (Modeling and Situational Quality Management of Complex Systems), Collection of Reports of the Fourth All-Russian Scientific Conference, St. Petersburg, April 18–22, 2023, рр. 61–64. (in Russ.)
  11. Maiorov E.E. Modelirovaniye i situatsionnoye upravleniye kachestvom slozhnykh sistem (Modeling and Situational Quality Management of Complex Systems), Collection of Reports of the Fourth All-Russian Scientific Conference, St. Petersburg, April 18–22, 2023, рр. 65–68. (in Russ.)
  12. Maiorov E.E., Kostin G.A., Chernyak T.A. Nauchnoe Priborostroenie, 2023, no. 2(33), pp. 75–83. (in Russ.)
  13. Maiorov E.E., Kostin G.A., Chernyak T.A. Journal of Instrument Engineering, 2023, no. 5(66), pp. 430–436, DOI: 10.17586/0021-3454-2023-66-5-430-436. (in Russ.)
  14. Kostin G.A., Chernyak T.A., Maiorov E.E. News of the Tula state university. Technical sciences, 2023, no. 4, pp. 109–112, DOI: 10.24412/2071-6168-2023-4-109-112. (in Russ.)
  15. Maiorov E.E., Pushkina V.P., Arefiev A.V., Kurlov V.V., Guliyev R.B.O., Tayurskaya I.S. News of the Tula state university. Technical sciences, 2023, no. 4, pp. 132–137, DOI: 10.24412/2071-6168-2023-4-132-137. (in Russ.)
  16. Maiorov E.E., Chernyak T.A., Kostin G.A. Instruments, 2023, no. 5(275), pp. 51–54. (in Russ.)
  17. Maiorov E.E., Borodyansky Yu.M., Kurlov V.V., Tayurskaya I.S., Pushkina V.P., Guliev R.B. Journal of Instrument Engineering, 2023, no. 8(66), pp. 688–695, DOI: 10.17586/0021-3454-2023-66-8-688-695. (in Russ.)
  18. Maiorov E.E., Arefiev A.V., Kurlov V.V., Pushkina V.P., Borodyansky Yu.M., Tayurskaya I.S. News of the Tula state university. Technical sciences, 2023, no. 7, pp. 585–590, DOI: 10.24412/2071-6168-2023-7-585-586 (in Russ.)
  19. Maiorov E.E., Kostin G.A., Chernyak T.A., Baranov N.E. News of the Tula state university. Technical sciences, 2023, no. 7, pp. 577–581, DOI: 10.24412/2071-6168-2023-7-577-578. (in Russ.)