ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

6
Issue
vol 67 / May, 2024
Article

DOI 10.17586/0021-3454-2024-67-6-481-491

UDC 681.5

COMFORT NAVIGATION IMPROVEMENT OF PATH PLANNING TASK IN HUMAN–ROBOT INTERACTION

L. Duzhesheng
ITMO University, Saint Petersburg, 197101, Russian Federation; PhD Student


S. A. Chepinskiy
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


J. . Wang
Hangzhou Dianzi University, Hangzhou, 310018, China; scientific researcher

Reference for citation: Duzhesheng Liao, Chepinskiy S. A., Jian Wang. Comfort Navigation Improvement Of Path Planning Task In Human–Robot Interaction. Journal of Instrument Engineering. 2024. Vol. 67, N 6. P. 481–491 (in Russian). DOI: 10.17586/0021-3454-2024-67-6-481-491

Abstract. Navigation is the core of mobile robot applications, but traditional configurations have great difficulties in dealing with dynamic human factors. This means that new service robots must not only undertake the task of autonomous navigation, but also be good at social interaction and consider harmonious coexistence with others. This paper designs a social navigation based on improving the comfort of human–robot interaction. The social space costs and constraints are modeled using asymmetric Cauchy functions, and predictions are made using human–human or human–robot interaction, and pedestrian encounters are considered. The difference in the degree of attention paid to oneself, front, rear, left, and right when encountering obstacles or pedestrians establishes the benchmark for the corresponding model. On this basis, a map cost function is constructed, which can use different constraints on the path and specify that the robot does not enter certain spaces, or enter specific spaces under certain circumstances. The A* and jump algorithms were modified based on the map cost function, and experiments were conducted in MATLAB. The experimental results show that the designed social comfort navigation can effectively realize the function, pedestrians’ personal space is guaranteed, and goal-oriented intentionality is understood by the robot. Understanding, coexistence and adaptability of mobile service robots are significantly improved.
Keywords: mobile robot control, A* algorithm, comfort navigation, obstacle avoidance, path planning

References:

1. Li Lei, Ye Tao, Tan Min, Chen Xi-Jun. Present state and future development of mobile robot technology research // Robot. 2002. Vol. 24, N 5. P. 475–480. 2. Zhu Daqi, Yan Mingzhong. Overview of mobile robot path planning technology // Control and Decision. 2010. Vol. 25, N 7. P. 961–967. 3. Lu D. V., Hershberger D., Smart W. D. Layered costmaps for context-sensitive navigation // IEEE Intern. Conf. on Intelligent Robots and Systems. Chicago, IEEE, 2014. Р. 709–715. DOI: 10.1109/iros.2014.6942636. 4. Hall E. T. The hidden dimension: man’s use of space in public and private. London: Bodley Head, 1969. 217 p. 5. Vasquez D., Stein P., Rios-Martinez J. et al. Human aware navigation for assistive robotics // The 13th Intern. Symp. on Experimental Robotics. Heidelberg: Springer, 2013. Р. 449–462. 6. Hidalgo-Paniagua A., Vega-Rodríguez M. A., and Ferruz J. Applying the MOVNS (multi-objective variable neighborhood search) algorithm to solve the path planning problem in mobile robotics // Expert Syst. Appl. 2016. Vol. 58. P. 20–35. 7. Contreras-Cruz M. A., Ayala-Ramirez V., and Hernandez-Belmonte U. H. Mobile robot path planning using artificial bee colony and evolutionary programming // Appl. Soft Comput. 2015. Vol. 30. P. 319–328. 8. LaValle S. M. Planning Algorithms. NY, USA: Cambridge Univ. Press, 2006. 9. Klančar G., Zdešar A., Blažič S., and Škrjanc I. Path planning // Wheeled Mobile Robotics. London, UK: Butterworth, 2017. Ch. 4. P. 161–206. 10. Kapitanyuk Y. A., Chepinskiy S. A. Control of mobile robot following a piecewise-smooth path // Gyroscopy and Navigation. 2013. Vol. 4, is. 4. P. 198–203. 11. Wang J., Krasnov A. Yu., Kapitanyuk Yu. A., Chepinskiy S. A., Chen Y., and Liu H. Path Following Control Algorithms Implemented in a Mobile Robot with Omni Wheels // Gyroscopy and Navigation. 2016. Vol. 7, N 4. P. 353–359. 12. Ван Цзянь, Краснов А. Ю., Капитанюк Ю. А., Чепинский С. А., Холунин С. А., Чэнь Ифань, Лю Хуэйминь, Хвостов Д. А. Траекторное управление движением твёрдого тела относительно подвижного объекта // Изв. вузов. Приборостроение. 2017. Т. 60, № 11. С. 1003–1011. 13. Bennewitz M. Mobile robot navigation in dynamic environments. Freiburg: Albert Ludwigs Universität Freiburg, 2004. 14. Hayduk L. A. Personal space: An evaluative and orienting overview // Psychological Bulletin. 1978. Vol. 85, N 1. Р. 117–134. DOI:10.1037/0033-2909.85.1.117. 15. Nawa N. E., Hashiyama T., Furuhashi T., and Uchikawa Y. A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator // Proc. IEEE Int. Conf. Evol. Comput. 1997. P. 589–593. 16. Chen Weihua. Research on positioning and navigation methods of wheeled mobile robots in social environment. Guangzhou: South China University of Technology, 2018. 17. Masehian E., Sedighizadeh D. Classic and heuristic approaches in robot motion planning – a chronologicaln review // Proc. of World Academy of Science Engineering and Technology. 2007. Vol. 23. Р. 101–106. 18. Kramer O. Genetic Algorithms Essentials. Cham, Switzerland: Springer, 2017. P. 11–19. 19. Trautman P. Sparse interacting gaussian processes: efficiency and optimality theorems of autonomous crowd navigation // IEEE 56th Annual Conf. on Decision and Control. Melbourne. IEEE. 2017. Р. 327–334.