ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2024-67-6-525-532

UDC 62-1/-9

STADIES OF MODERN PIROELECTRIC RECEIVERS AND A COMPACT DEVICE FOR MEASURING THEIR SENSITIVITY

A. F. Aushev
Scientific Research Institute for Optoelectronic Instrument Engineering ; Senior Researcher


L. A. Gluschenko
JSC “Scientific Research Institute for Optoelectronic Instrument Engineering”;

Reference for citation: Aushev A. F., Glushchenko L. A. Compact installation for measuring the sensitivity of pyrotechnics // Izv. vuzov. Instrumentation. 2024. Vol. 67, No. 6. pp. 525-532. DOI: 10.17586/0021-3454-202467-6-525-532.

Abstract. The work is devoted to the development of methods for measering the threshold sensitivity of pyroelectric receivers, that allow minimizing instrumental measurement errors. Experimental confirmation of the possibility of measuring the threshold sensitivity of pyroelectric receivers with a compact measurement scheme using a projection system such as a camera obscura.
Keywords: pyroreceiver, camera obscura, optical radiation, absolutely black body, synchronous detector, receiver threshold sensitivity

Acknowledgement: The authors thank N. I. Pavlov, Deputy General Director for Scientific Work of JSC NII OEP, Doctor of Technical Sciences, for useful consultations and discussions.

References:
  1. Borisova M. E. Aktivnyye dielektriki (Active Dielectrics), St. Petersburg, 2012, 82 р. (in Russ.)
  2. V’yukhin V. N., Ivanov S. D. Optoelectronics, Instrumentation and Data Processing, 2018, no. 5(54), pp. 502–505.
  3. https://cyberleninka.ru/article/n/byatrodeystvuyuschiy-neohlazhdaemyy-teplovoy-priemnik-ik-izlucheniya/viewer/. (in Russ.)
  4. Ivanov S. D., Kostsov E. G. Advances in Applied Physics, 2017, no. 2(5), pp. 136–154. (in Russ.)
  5. Gibin I. S., Kolesnikov G. V. Advances in Applied Physics, 2014, no. 3(2), pp. 293–302. (in Russ.)
  6. Gulakov I. R., Zenevich A. O., Novikov E. V., Kochergina O. V., Lagutik A. A. Advances in Applied Physics, 2021, no. 3(9), pp. 216-223, DOI: 10.51368/2307-4469-2021-9-3-216-223. (in Russ.)
  7. Andosov A. I., Batsheva A. A., Polesskiy A. V., Tresak V. K., Khamidullin K. A. Advances in Applied Physics, 2018, no. 2(6), pp. 149–156. (in Russ.)
  8. Chukita V. I., Senokosov E. A., Feshchenko V. S. Rossiiskii Tekhnologicheskii Zhurnal, 2019, no. 3(7), pp. 69–76, DOI: 10/32362/2500-316X-2019-7-3-69-76. (in Russ.)
  9. Batsheva A. A., Kuznetsov V. Y., Polesskiy A. V., Tresak V. K. Advances in Applied Physics, 2018, no. 1(6), pp. 68–74. (in Russ.)
  10. Kuvaldin E. V., Shul’ga A. A. Journal of Optical Technology, 2017, no. 2(84), pp. 108–112.
  11. Patent RU 2689457, Stend izmereniya parametrov teplovizionnykh kanalov (Stand for Measuring Parameters of Thermal Imaging Channels), R. R. Agafonova, M. N. Batavin, D. V. Kulikov, A. V. Mingalev, S. N. Shusharin, Published 2019, Bulletin 16. (in Russ.)
  12. Patent RU 2507495, Sposob kontrolya parametrov optiko-elektronnykh sistem v rabochem diapazone temperature (A Method for Monitoring the Parameters of Optical-Electronic Systems in the Operating Temperature Range), V. M. Demidov, A. L. Logutko, E. N. Fedonov, Published 2014, Bulletin 5. (in Russ.)
  13. Gulakov I. R., Zenevich A. O., Kochergina O. V Advances in Applied Physics, 2021, no. 2(9), pp. 164–171, DOI: 10.51368/2307-4469-2021-9-164-171. (in Russ.)
  14. Polesskiy A. V., Solomonova N. A. Advances in Applied Physics, 2020, no. 2(8), pp. 148–154. (in Russ.)