ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 67 / July, 2024
Article

DOI 10.17586/0021-3454-2024-67-7-567-573

UDC 538.975

MODELING OF A HEAT SOURCE IN A FILM WITH NANOPARTICLES UNDER THE ACTION OF ULTRASHORT LASER PULSES

M. M. Sergeev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor, Senior Researcher


A. E. Pushkareva
ITMO University, Saint Petersburg, 197101, Russian Federation,; Leading Engineer


V. R. Gresko
ITMO University, Saint Petersburg, 197101, Russian Federation; Junior Researcher

Reference for citation: Sergeev М. М., Pushkareva A. E., Gresko V. R. Modeling of a heat source in a film with nanoparticles under the action of ultrashort laser pulses. Journal of Instrument Engineering. 2024. Vol. 67, N 7. P. 567–573 (in Russian). DOI: 10.17586/0021-3454-2024-67-7-567-573.

Abstract. Simulation results describing the heat source formation and optical properties modification of the zinc oxide sol-gel films with silver nanoparticles by the series of ultrashort laser pulses in heat-accumulation mode are demonstrated. Based on presented relationships between laser exposure modes, the optical characteristics of films and the properties of nanoparticles in them, the possibility of predicting the optical properties of the composite materials is shown.
Keywords: ultrashort Laser pulses, nanoparticles, plasmon resonance, laser irradiation

Acknowledgement: the research was carried out with funding from a grant from the Russian Science Foundation (project No. 19-79-10208).

References:
  1. Sugioka K. Nanophotonics, 2017, no. 2(6), pp. 393–413.
  2. Stalmashonak A., Seifert G., Abdolvand A. Ultra-short Pulsed Laser Engineered Metal-Glass Nanocomposites, Heidelberg: Springer, 2013, 70 р.
  3. Unser S., Bruzas I., He J., Sagle L. Sensors, 2015, no. 7(15), pp. 15684–15716.
  4. Shirshneva-Vaschenko E.V., Sokura L.A., Shirshnev P.S., Kirilenko D.A., Snezhnaia Z.G., Bauman D.A., Bougrov V.E., Romanov A.E. Reviews on Advanced Materials Science, 2018, no. 2(57), pp. 167–174, https://doi.org/10.1515/rams2018-0061.
  5. Destouches N., Sharma N., Vangheluwe M., Dalloz N., Vocanson F., Bugnet M., Hébert M., Siegel J. Advanced Functional Materials, 2021, no. 18(31).
  6. Sergeev M.M., Zakoldaev R.A., Itina T.E., Varlamov P.V., Kostyuk G.K. Nanomaterials, 2020, no. 6(10), pp. 1131.
  7. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost' smesey i kompozitsionnykh materialov (Thermal Conductivity of Mixtures and Composite Materials), Leningrad, 1974, 264 р. (in Russ.)
  8. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles, Wiley-Verlag, 1983.
  9. Sergeev M.M., Gresko V.R., Andreeva Y.M., Sokura L.A., Shirshneva-Vaschenko E.V., Itina T.E., Varygin G.V. Optics & Laser Technology, 2022, vol. 151, р. 108059.
  10. Miyamoto I., Horn A., Gottmann J., Wortmann D., Yoshino F. Journal of Laser Micro/Nanoengineering, 2007, no. 1(2), pp. 57–63.
  11. Martienssen W., Warlimont H. Springer handbook of condensed matter and materials data, Berlin, Springer Science & Business Media, 2006, 1121 p.