ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 67 / July, 2024
Article

DOI 10.17586/0021-3454-2024-67-7-622-632

UDC 621.389

APPLICATION OF THE DIRECT EXPOSURE UNIT BASED ON LS-MATRIX FOR COMPENSATION OF PRINTED CIRCUIT BOARDS DEFORMATION

M. A. Korobkov
Moscow Aviation Institute, Department of Digita Technologies and Information Systems ; Senior Lecturer

Reference for citation: Korobkov M. A. Application of the direct exposure unit based on LS-matrix for compensation of printed circuit boards deformation. Journal of Instrument Engineering. 2024. Vol. 67, N 7. P. 622–632 (in Russian). DOI: 10.17586/00213454-2024-67-7-622-632.

Abstract. The possibility of using a laboratory prototype of a direct exposure setup using a liquid crystal (LC) matrix to form a topology on a photosensitive material to compensate for printed circuit board (PCB) deformation during their production is investigated. Existing methods for assessing PCB deformation are considered — a method for compensating for deformation at the exposure stage based on the method of controlling the compatibility of topological layers is proposed. Assumptions simplifying its implementation are defined for the proposed method. The hardware upgrade of the laboratory prototype of the setup was performed by adding a feedback loop in the form of a video camera providing information on the PCB position on the working field. Elements of preparing the setup for operation are defined. An algorithm for generating images for display on the LCD matrix is developed and tested.
Keywords: PCB manufacturing, PCB deformation, direct exposure, digital photomask, reliability of PCB manufacturing processes

Acknowledgement: the work was supported by the Russian Science Foundation, grant No. 23-29-10204

References:
  1. Vasilyev F.V., Medvedev A.M., Barakovsky F.A., Korobkov M.A. Inventions, 2021, no. 3(6), pp. 48, DOI: 10.3390/ inventions6030048.
  2. Barakovsky F., Vantsov S., Vasiliev F. Electronics: Science, Technology, Business, 2020, no. 3(194), pp. 108–113. (in Russ.)
  3. Medvedev A.M., Sokolsky A.M. Sborka v mashinostroyenii, priborostroyenii, 2015, no. 11, pp. 41–44. (in Russ.)
  4. Beger E. Components and technologies, 2009, no. 1, pp. 116–119. (in Russ.)
  5. Vantsov S., Khomutskaya O., Liin E. Electronics: Science, Technology, Business, 2023, no. 8(229), pp. 108–113. (in Russ.)
  6. Nikitin S., Pozdnyakov K., Khomustkaya O. Proizvodstvennyye tekhnologii, 2019, no. 5, pp. 144–150. (in Russ.)
  7. Khomutskaya O.V., Medvedev A.M., Korobkov M.A., Vancov S.V. Proceedings – ICOECS 2021: 2021 Intern. Conf. on Electrotechnical Complexes and Systems, 2021, рр. 510–512, DOI: 10.1109/ICOECS52783.2021.9657420.
  8. Vasiliev F.V. Fizicheskaya nadezhnost' elektroniki (Physical Reliability of Electronics), Moscow, 2022, 160 р. (in Russ.)
  9. Coombs C.F. Printed Circuits Handbook, McGraw-Hill Companies, 2008.
  10. 10. Korobkov M.A., Zaikin V.D., Mareichev E.S., Khomutskaya O.V., Vasiliev F.V. Nauchnoe Priborostroenie (Scientific Instrumentation), 2023, no. 1(33), pp. 65–85. (in Russ.)
  11. Korobkov M.A., Zajkin V.D. Trudy MAI, 2023, no. 132. (in Russ.)
  12. Krylov S.A., Medvedev A.M., Serzhantov A.M. Voprosy radioelektroniki. Seriya EVT, 1989, no. 7, pp. 9–19. (in Russ.)
  13. Medvedev A.M. Tekhnologii v elektronnoi promyshlennosti, 2005, no. 6 (6), pp. 48–51 (in Russ.)
  14. Ievlev V.I. Analiz tochnosti proizvodstva elektronnykh sredstv (Analysis of the Accuracy of Electronic Production), Ekaterinburg, 2010, 103 р. (in Russ.)
  15. Tsvetkov Yu.B. Upravleniye topologicheskoy tochnost'yu fotolitografii (Control of Topological Accuracy of Photolithography), Moscow, 2005, 174 р. (in Russ.)
  16. Mozharov V.A. Trudy MAI, 2013, no. 65, pp. 36. (in Russ.)
  17. Mozharov V.A. Obespecheniye prostranstvennogo sovmeshcheniya elementov mezhsoyedineniy v mnogosloynykh pechatnykh strukturakh (Ensuring Spatial Alignment of Interconnection Elements in Multilayer Printed Structures), Candidate’s thesis, Moscow, 2013, 149 р. (in Russ.)
  18. Khomutskaya O.V. Razrabotka metodiki i algoritmov avtomatizirovannoy otsenki deformatsii v mnogosloynykh pechatnykh strukturakh (Development of Methods and Algorithms for Automated Assessment of Deformation in Multilayer Printed Structures), Candidate’s thesis, Moscow, 2019. (in Russ.)
  19. Chen I.-C., Hwang R.-C., Huang H.-C. Processes, 2023, no. 11, pp. 775, https://doi.org/10.3390/pr11030775.
  20. https://pypi.org/project/pcb-tools/. (in Russ.)
  21. Maximov N., Skleymin Yu., Sharonov A. Aerospace MAI Journal, 2016, no. 3(23), pp. 102–111. (in Russ.)
  22. Maximov N., Malyuta E., Sharonov A. Aerospace MAI Journal, 2015, no. 4(22), pp. 85–90. (in Russ.)
  23. Maximov A.N., Alexandrov A.A., Romanov V.D. Scientific and Technical Volga Region Bulletin, 2022, no. 4, pp. 96–98. (in Russ.)