DOI 10.17586/0021-3454-2024-67-8-637-646
UDC 519.725
SETS OF QUINARY KASAMI-LIKE SEQUENCES FOR DIGITAL INFORMATION TRANSMISSION SYSTEMS
Multiservice Nets and Telecommunications, Ltd., St. Petersburg; Head of Department
Y. G. Morozov
A. F. Mozhaisky Military Space Academy, Department of Technologies and Automation Tools for Processing and Analysis of Spacecraft Information ;
Reference for citation: Starodubtsev V. G., Morozov Y. G. Sets of quinary Kasami-like sequences for digital information transmission systems. Journal of Instrument Engineering. 2024. Vol. 67, N 8. P. 637–646 (in Russian). DOI: 10.17586/0021-34542024-67-8-637-646.
Abstract. For quinary basic M-sequences (MS) with the period N = 5S – 1 (S = 4, 6), sets of vectors of decimation indices IS,MK = (d1, d2, ..., dn) are presented, on the basis of which small sets of Kasami-like sequences (KLS) with the period N < 20 000 are formed in the finite fields GF(5S). It is shown that for values of S = 4, 6 the periodic cross-correlation function (PCCF) of a small set of KLS is four-level with a maximum value of the PCCF RmaxS,MK = (5S/2 + 1). The values of the volumes of small sets of quinary KLS are given.
Abstract. For quinary basic M-sequences (MS) with the period N = 5S – 1 (S = 4, 6), sets of vectors of decimation indices IS,MK = (d1, d2, ..., dn) are presented, on the basis of which small sets of Kasami-like sequences (KLS) with the period N < 20 000 are formed in the finite fields GF(5S). It is shown that for values of S = 4, 6 the periodic cross-correlation function (PCCF) of a small set of KLS is four-level with a maximum value of the PCCF RmaxS,MK = (5S/2 + 1). The values of the volumes of small sets of quinary KLS are given.
Keywords: finite fields, correlation function, M-sequences, Kasami sequences, decimation indices
References:
References:
- Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
- Vishnevskij V.M., Lyahov A.I., Portnoj S.L., Shahnovich I.V. Shirokopolosnye besprovodnye seti peredachi informacii (Broadband Wireless Data Transmission Network), Moscow, 2005, 592 p. (in Russ.)
- Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
- Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)
- Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge, Cambridge Univ. Press, 2005.
- Ipatov V.P. Periodicheskie diskretnye signaly s optimal’nymi korrelyacionnymi svojstvami (Periodic Discrete Signals with Optimum Correlation Properties), Moscow, 1992, 152 p. (In Russ.)
- Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.
- Boztaş S., Özbudak F., Tekin E. Cryptogr. Commun., 2018, no. 3(10), pp. 509.
- Cho Ch.-M., Kim J.-Y., No J.S. IEICE Transactions on Communications, 2015, no. 7(E98), pp. 1268.
- Starodubtsev V.G. Trudy SPIIRAN (SPIIRAS Proceedings), 2019, no. 4(18), pp. 912. (in Russ.)
- Choi S.T., Lim T., No J.S., Chung H. IEEE Trans. Inf. Theory, 2012, no. 3(58), pp. 1873.
- Xia Y., Chen S. IEEE Trans. Inf. Theory, 2012, no. 9(58), pp. 6037.
- Lee W., Kim J.-Y., No J.S. IEICE Transactions on Communications, 2014, no. 1(E97-B), pp. 2311.
- Song M.K., Song H.Y. IEEE Trans. Inf. Theory, 2018, no. 4(64), pp. 2901.
- Starodubtsev V.G. Journal of Communications Technology and Electronics, 2023, no. 2(68), pp. 128. (in Russ.)
- Helleseth T., Kumar P.V., Martinsen H. Designs, Codes and Cryptography, 2001, no. 2(23), pp. 157.
- Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.
- Starodubtsev V.G., Chetverikov E.A. Journal of Instrument Engineering, 2023, no. 10(66), pp. 807. (in Russ.)
- Starodubtsev V.G., Tkachenko V.V. Journal of Instrument Engineering, 2024, no. 2(67), pp. 107. (in Russ.)