ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

12
Issue
vol 68 / December, 2025
Article

DOI 10.17586/0021-3454-2025-68-12-1056-1065

UDC 004.942

DEVELOPMENT OF A LIBRARY OF MULTIBOND GRAPHS FOR MODELING MULTIBODY SYSTEMS

V. A. Dmitriev
Association of Digital Technologies in Industry, Saint Petersburg, 191181, Russian Federation; ITMO University, Saint Petersburg, 197101, Russian Federation; Head of the Practice


M. Y. Marusina
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor, Scientific Secretary

Reference for citation: Dmitriev V. A., Marusina M. Ya. Development of a library of multibond graphs for modeling multibody systems. Journal of Instrument Engineering. 2025. Vol. 68, N 12. P. 1056–1065 (in Russian). DOI: 10.17586/0021-3454-2025-68-12-1056-1065.

Abstract. The representation of dynamical systems in the form of bond graphs, which make it possible to unify a modular approach to modeling multi-domain physical systems described by laws from various fields of physics, such as mechanics and hydraulics, is considered. Based on multiconnected or vector bond graphs, a library of mechatronic system elements, which accelerates the process of building models and reduces the likelihood of errors, is been developed in Matlab- Simulink environment. The structure of the developed library and its main elements, which make it possible to describe systems of several bodies and simulate their motion in various reference frames, are discussed. An example of using the library for modeling a specific mechanical system is given.
Keywords: bond graph, dynamics, analysis, energy, multi-connected representation

References:
  1. Das S. Mechatronic Modeling and Simulation Using Bond Graphs, Boca Raton, CRC Press, 2009.
  2. Lagrange J. Méchanique Analytique, 1997.
  3. Strogalev V.P., Tolkacheva I.O. Imitatsionnoye modelirovaniye (Simulation Modeling), Moscow, 2008, 737 р. (in Russ.)
  4. Rahmani A., Hasan M.N., Zak M. Test Eng. Manag., 2020, vol. 82, рр. 15154–15167.
  5. Badoud A.E., Merahi F., Bouamama B.O., Mekhilef S. Intern. J. Hydrogen Energy, 2021, vol. 46, рр. 24011–24027.
  6. Mohammed A., Sirahbizu B., Lemu H.G. Energies, 2022, vol. 15, рр. 6858.
  7. Nuñez I., Breedveld P.C., Weustink P.B.T., Gonzalez G. Proceedings of the International Conference on Integrated Modeling and Analysis in Applied Control and Automation, Bergeggi, Italy, September 21–23, 2015, pp. 39–47.
  8. Mishra N., Vaz A. Mech. Mach., 2017, vol. 117, рр. 1–20.
  9. Pathak A.K., Vaz A. Proceedings of the 3rd International and 18th National Conference on Machines and Mechanisms, Mumbai, India, December 13–15, 2017.
  10. Mishra N., Vaz A. Mech. Mach. Theory, 2020, vol. 146, рр. 103719.
  11. Gonzalez G., Barrera N., Ayala G., Padilla A. Appl. Sci., 2023, vol. 13, рр. 5880.
  12. Gonzalez G., Padilla A. Electr. Eng., 2018, vol. 100, рр. 293–302.
  13. Cellier F. Simulation, 2005, no. 4(58), pp. 230–248.
  14. Zhou X. and Cui Y. Journal of Vibroengineering, 2022, no. 3(24), pp. 604–614.
  15. Gonzalez-Avalos G., Gallegos N.B., Ayala-Jaimes G., Garcia A.P., Ferreyra García L.F., Rodríguez A.J.P. Symmetry in Graph Algorithms and Graph Theory III, 2023, no. 12(15), pp. 2170.
  16. Dmitriev V.А., Marusina M.Ya. Journal of Instrument Engineering, 2024, no. 2(67), pp. 195–199, DOI: 10.17586/0021- 3454-2024-67-2-195-199. (in Russ.)
  17. Shojaei Barjuei E., Caldwell D.G., & Ortiz J. Designs, 2020, no. 4(4), pp. 53.
  18. Umarikar A., Mishra T., & Umanand L. Journal of the Indian Institute of Science, 2006, vol. 86, рр. 45–68.
  19. Dmitriyev V.A. Informatsionnyye tekhnologii v upravlenii, avtomatizatsii i mekhatronike (Information Technologies in Control, Automation and Mechatronics), Collection of Scientific Papers of the 4th International Scientific and Technical Conference, 2022, рр. 83–86. (in Russ.)