ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

12
Issue
vol 68 / December, 2025
Article

DOI 10.17586/0021-3454-2025-68-12-1066-1078

UDC 538.958; 51-73 (51-74)

ASSESSMENT OF RADIATION-INDUCED LOSSES IN FIBER-OPTIC SYSTEMS

D. V. Khisamov
Perm Polytechnic University, Faculty of Applied Mathemetics and Mechanics; Perm Scientific and Production Instrument Engineering Company, Scientific and Educational Center ; Research Engineer


A. V. Perminov
Perm National Research Polytechnic University, Department of General Physics ; Head of the Department


I. S. Azanova
Perm Scientific and Production Instrument Engineering Company, Scientific and Educational Center ; Director of the Center, Chief Designer of Fiber Optics


E. A. Lunegova
Perm Scientific and Production Instrument Engineering Company, Scientific and Educational Center ; Director of the Center, Chief Designer of Fiber Optics


A. S. Vakhrushev
Perm Scientific and Production Instrument Engineering Company, Scientific and Educational Center; Scientific Consultant

Reference for citation: Khisamov D. V., Perminov A. V., Azanova I. S., Lunegova E. A., Vakhrushev A. S. Assessment of radiation- induced losses in fiber-optic systems. Journal of Instrument Engineering. 2025. Vol. 68, N 12. P. 1066–1078 (in Russian). DOI: 10.17586/0021-3454-2025-68-12-1066-1078.

Abstract. Experimental results of a study of the effect of ionizing radiation with different dose rates on fiber-optic systems using fibers with a germanosilicate core (GeO2) and an undoped pure silica core (SiO2) are presented. A mathematical approximation of the experimental curves for the growth of radiation-induced optical losses in the fiber is performed using a modified power-law equation that includes the contribution of the ionizing radiation dose rate. A correlation between the values of empirical coefficients and the dose rate of ionizing radiation is experimentally established. A natural logarithmic function equation is proposed for describing the dependence of the empirical coefficients defining the shape of the radiation-induced loss growth curve on the dose rate. An approach to reconstructing the radiation-induced loss growth curve using equations for the dependence of the empirical approximation coefficients on the dose rate is proposed; this technique enables predicting the radiation response of the optical fiber under new conditions without experimental setup. The method demonstrates applicability for single-mode fibers with silica and germanosilicate fiber cores of different designs. Based on the described approach, a methodology is developed for determining correlation equations for empirical coefficients.
Keywords: radiation resistance, optical fiber, radiation-induced optical losses, ionizing effect, mathematical approximation

References:
  1. Girard S. et al. IEEE Transactions on Nuclear Science, 2024, рp. 38, DOI: 10.1109/TNS.2024.3511455.
  2. Gilard O. et al. Journal of Applied Physics, 2010, no. 9(108), pp. 5, DOI: 10.1063/1.3503370.
  3. Friebele E.J., Gingerich M.E., Griscom D.L. Proc. SPIE, Optical Materials Reliability and Testing: Benign and Adverse Environments, 1993, no. 1791, pp. 177–188, DOI: 10.1117/12.141177.
  4. Girard S. et al. Journal of Optics, 2018, no. 093001(20), pp. 48, DOI: 10.1088/2040-8986/aad271.
  5. Girard S. et al. Reviews in Physics, 2019, no. 100032(4), pp. 18, DOI: 10.1016/j.revip.2019.100032.
  6. Kashaykin P.F., Tomashuk A.L., Azanova I.S., Vokhmyanina O.L., Dimakova T.V., Maltsev I.A., Sharonova Yu.O., Pospelova E.A. et al. Journal of Non-Crystalline Solids, 2019, vol. 508, рр. 26–32, DOI: 10.1016/j. jnoncrysol.2018.12.016.
  7. Perrot J., Morana A., Marin E. et al. Photonics, 2023, no. 1349(10), pp. 14, DOI: 10.3390/photonics10121349.
  8. Regnier E., Flammer I., Girard S. et al. IEEE Transactions on Nuclear Science, 2007, no. 4(54), pp. 1115–1119, DOI: 10.1109/TNS.2007.894180.
  9. Kashaykin P.F., Tomashuk A.L., Vasiliev S.A. et al. Nuclear Materials and Energy, 2021, no. 100981(27), pp. 11, DOI: 10.1016/j.nme.2021.100981.
  10. Girard S., Keurinck J., Boukenter A. Nuclear Instruments and Methods in Physics Research B, 2004, no. 1-2(215), pp. 187–195, DOI: 10.1016/j.nimb.2003.08.028.
  11. Griscom D.L. Physical Review B, 1989, no. 6(40), pp. 4224–4227, DOI: 10.1103/PhysRevB.40.4224.
  12. Griscom D.L. Journal of Non-Crystalline Solids, 1992, no. 1-2(149), pp. 137–160, DOI: 10.1016/0022-3093(92)90062-O.
  13. Ivanov G.A., Pervadchuk V.P. Technologia proizvodstva и i svoistva kvartzevykh opticheskykh volokon (Production Technology and Properties of Quartz Optical Fibers), Perm, 2011, 171 р. (in Russ.)
  14. Griscom D.L., Gingerich M.E., Friebele E.J. IEEE Transactions on Nuclear Science, 1994, no. 3(41), pp. 523–527, DOI: 10.1109/23.299793.
  15. Griscom D.L., Gingerich M.E., Friebele E.J. Physical Review Letters, 1993, no. 7(71), pp. 1019–1022, DOI: 10.1103/ PhysRevLett.71.1019.
  16. Kovacˇevic´ M.S., Savovic´S., Djordjevich A. et al. Optics & Laser Technology, 2013, vol. 47, рр. 148–151, DOI: 10.1016/j.optlastec.2012.09.019.
  17. Rashed A., Mohamed A., Mahmoud I. et al. International Journal of Advanced Research in Computer Engineering &Technology (IJARCET), 2013, no. 11(2), pp. 2768–2775.
  18. Borgermans P., Brichard B., Decreton M. Proc. SPIE, 2002, vol. 4547, рр. 8, DOI: 10.1117/12.454377.
  19. Azanova I.S. et al. Bulletin of Perm University. Physics, 2022, no. 4, pp. 52–70. DOI: 10.17072/1994-3598-2022-4- 52-70. (in Russ.)
  20. https://www.vniief.ru/partnership/ckp/Rad/696c4f004e9873debce5bf01408a5e54. (in Russ.)
  21. OriginLab. Additional Information of R-squere, https://www.originlab.com/doc/Origin-Help/Details_of_R_square.