ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2022-65-3-164-173

UDC 62–529

HARDWARE AND SOFTWARE ARCHITECTURE FOR ANTHROPOMORPHIC ROBOT HAND CONTROL SYSTEM

D. V. Ivolga
ITMO University, Faculty of Control Systems and Robotics, International Laboratory of Biomechatronics and Energy-Efficient Robotics;


E. E. Khomutov
ITMO University, Faculty of Control Systems and Robotics, International Laboratory of Biomechatronics and Energy-Efficient Robotics;


I. I. Borisov
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


N. A. Molchanov
Sberbank, Robotics Laboratory;


I. A. Maksimov
Sberbank, Robotics Laboratory;


S. A. Kolyubin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


Read the full article 

Abstract. The results of the development and implementation of hardware and software architecture for the control system of an adaptive anthropomorphic robotic hand are presented. The research focuses on possibility of integrating the proposed robotic hand into the iCub robot’s control system while preserving the functionality and flexibility of implementing control algorithms. It has been achieved by prototyping the control system as an independent module connected to the iCub robot via network interface Ethernet. The data exchange between the gripper and the iCub robot has high stability and performance with a control frequency of 2 kHz with a delay less than 310 us and a jitter below 50 us. Testing of the control system’s software and hardware architecture demonstrated high accuracy in position control (± 1⁰) and force control (± 0,15 N) for fingers’ proximal phalanges.
Keywords: anthropomorphic grippers, control system, hardware, choice of element base, sensors, software interface

References:
  1. Piazza C. et al. A Century of Robotic Hands. Annual Review of Control, Robotics, and Autonomous Systems, 2019, vol. 2, рр. 1–32, DOI: 2. 1-32. 10.1146/annurev-control-060117-105003.
  2. Simpkins C. Robotics & Automation Magazine, 2013, vol. 20, рр. 94–94, DOI: 10.1109/MRA.2012.2236252.
  3. Metta G. and Fitzpatrick P. Adaptive Behavior, 2003, no. 2(11), pp. 109–128, DOI: 10.1177/10597123030112004.
  4. Parmiggiani A. et al. International Journal of Humanoid Robotics, 2012, no. 4(9), pp. 9, DOI: 10.1142/S0219843612500272.
  5. Borisov I.I., Khomutov E.E., Kolyubin S.A., and Stramigioli S. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, рр. 6117–6123.
  6. Müller V.C., Hoffmann M. Artificial Life, 2017, no. 1(23), pp. 1–24.
  7. Borisov I.I., Zashchitin R.A., Borisova O.V., Kolyubin S.A. Journal of Instrument Engineering, 2020, no. 5(63), pp. 467–475, DOI: 10.17586/0021-3454-2020-63-5-467-475. (in Russ.)
  8. Jamali N. et al. A new design of a fingertip for the iCub hand, 2015, DOI:10.1109/IROS.2015.7353747.
  9. Schmitz A. et al. 10th IEEE-RAS International Conference of Humanoid Robots, 2011, рp. 186–191, DOI: 10.1109/ICHR.2010.5686825.
  10. Sönmez Ö. European Journal of Science and Technology, 2020, рр. 170–175, DOI: 10.31590/ejosat.803129.
  11. Tenzer Y., Jentoft L., and Howe R. Robotics Automation Magazine, IEEE, 2014, vol. 21, рр. 89–95, DOI: 10.1109/MRA.2014.2310152.
  12. Casalino G., Giorgi F. et al. IEEE International Conference on Robotics and Automation, 2003, nо. 03, DOI:10.1109/robot.2003.1242014.
  13. Zeng J., Yi P. et al. Microelectronics Journal, 2021, рp. 116, DOI: 10.1016/j.mejo.2021.105235.
  14. Lee Y. et al. 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). 2014. DOI: 10.1109/URAI.2014.7057385.
  15. Liu H., Wu K. et al. 17th IEEE International Symposium on Robot and Human Interactive Communication, 2018, DOI:10.1109/roman.2008.4600694.
  16. Sartori E., Fiorini P., Muradore R. 42nd Annual Conference of the IEEE Industrial Electronics Society, IECON, 2016, DOI:10.1109/iecon.2016.7792990.