DOI 10.17586/0021-3454-2023-66-1-7-15
УДК 65.01:621.9:658.5:65.011.56:004.9
АВТОМАТИЗИРОВАННАЯ КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКАЯ ПОДГОТОВКА В УСЛОВИЯХ ЦИФРОВОГО ПРОИЗВОДСТВА
Университет ИТМО, кафедра технологии приборостроения, Санкт-Петербург; доцент
Тимофеева О. С.
Университет ИТМО, кафедра технологии приборостроения; студентка
Яблочников Е. И.
Санкт-Петербургский национальный исследовательский университет ин-формационных технологий, механики и оптики; доцент, зав. кафедрой
Волосатова Е. Е.
Техприбор, бюро CAD/CAM-технологий ; начальник бюро
Читать статью полностью
Аннотация. Рассматриваются вопросы информационной интеграции конструкторской и технологической подготовки производства. Предложена методика построения 3D-моделей деталей, основанная на использовании унифицированных и типовых конструктивно-технологических элементов с учетом их структурных уровней. Применение методики облегчает возможность трансформации моделей при решении технологических задач, в том числе для построения моделей операционных заготовок, расчета технологических размеров, разработки управляющих программ для оборудования с числовым программным управлением. Предлагаемая методика наиболее эффективна при внедрении в производство многооперационных цифровых технологических процессов.
Ключевые слова: конструкторская подготовка производства, технологическая подготовка производства, единое информационное пространство, жизненный цикл изделия, цифровая модель изделия, 3D-модель детали, технологический процесс, 3D-модель операционной заготовки, станок с ЧПУ
Список литературы:
Список литературы:
- Manzei C., Schleupner L., Heinze R. Industrie 4.0 im internationalen Kontext. Berlin: VDE Verlag, 2017. 302 s.
- Помпеев К. П., Абрамян К. В., Тимофеева О. С., Яблочников Е. И. Технологическая подготовка производства деталей на станках с ЧПУ с использованием перестраиваемых 3D-моделей операционных заготовок // Металлообработка. 2020. № 4(118). С 50—59. DOI: 10.25960/mo.2020.4.50.
- ZuMin Wang, AiLing Wang, Wei Liu. PDM system study based on web // Mech. Manage. Develop. 2004. N 02. P. 72—73.
- Абрамян К. В., Помпеев К. П., Тимофеева О. С., Яблочников Е. И. Применение систем моделирования при формировании инженерных компетенций в области цифрового производства // Современное машиностроение: Наука и образование: Материалы 8-й Междунар. науч.-практ. конф. СПб: Политех-пресс, 2019. С. 3—14.
- Принципы разработки трехмерных моделей деталей вращения для их использования в технологическом проектировании / В. И. Аверченков, К. П. Помпеев, Л. В. Одинцова, В. К. Лопарев // Информационные технологии на транспорте: Сб. науч. тр. СПб: Политехника, 2003. С. 3—11.
- Mavliutov A. R., Zlotnikov E. G. Optimization of cutting parameters for machining time in turning process // IOP Conf. Series: Materials Science and Engineering. 2018. N 327(4). P. 042069.
- Maksarov V., Khalimonenko A. Quality assurance during milling of precision elements of machines components with ceramic cutting tools // Intern. Review of Mechanical Engineering. 2018. Vol. 12, iss. 5. Р. 437—441.
- Yang Y. Machining parameters optimization of multi-pass face milling using a chaotic imperialist competitive algorithm with an efficient constraint-handling mechanism // CMES — Computer Modeling in Engineering and Sciences. 2018. Vol. 116, iss. 3. Р. 365—389.
- Das S. R., Panda A., Dhupal D. Analysis of surface roughness in hard turning with coated ceramic inserts: Cutting parameters effects, prediction model, cutting conditions optimization and cost analysis // Ciencia e Tecnica Vitivinicola. 2017. Vol. 32. P. 127—154.
- Bezyazychny V. F., Sutyagin A. N., Bolotein A. N. Modeling a 3D surface roughness of mating parts produced with lathe turning // IOP Conf. Series: Earth and Environmental Science. 2018. N 194(2). P. 022005.
- Joshi V., Kumar H. Optimization of CNC Lathe Turning: A Review of Technique, Parameter and Outcome // Advances in Manufacturing and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2021. P. 963—973.
- Kovač P. et al. Modelling and Optimization of Surface Roughness Parameters of Stainless Steel by Artificial Intelligence Methods // Proc. of the Intern. Symp. for Production Research (ISPR). Lecture Notes in Mechanical Engineering. Springer, Cham, 2019. P. 3—12.
- Jha H., Panpalia A., Suneja D., Ashpilya G., Kumar H., Gautam V. () Estimation of Surface Roughness in Turning Operations Using Multivariate Polynomial Regression // Advances in Industrial and Production Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2021. P. 947—957.
- Andreev Y. S., Isaev R. M., Lubiviy A. V. Improvement of piezoelectric vibration sensors' performance characteristics via optimization of details' functional surfaces roughness // Journal of Physics: Conf. Series. 2018. Vol. 1015. P. 052010.
- Jamaludin Z., Shamshol Ali N. A., Rafan N. A., Abdullah L. Effect of Cutting Forces on Surface Roughness for Varying Depth of Cut and Feed Rates in Milling Machining Process // Intelligent Manufacturing and Mechatronics. SympoSIMM. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2019. P. 195—203.
- Бабанин В. С. Методика создания конструкторско-технологической модели детали в среде CAD-системы // Изв. вузов. Приборостроение. 2014. Т. 57, № 8. С. 21—25.
- Chlebus E., Krot K. CAD 3D Models Decomposition in Manufacturing Processes // Archives of Civil and Mechanical Engineering. 2016. Vol. 16, iss. 1. P. 20—29. DOI: 10.1016/j.acme.2015.09.008.
- Валетов В. А., Помпеев К. П. Технология приборостроения: Учеб. пособие СПб: СПбГУ ИТМО, 2013. 234 с.
- Бабанин В. С. Параметрическое моделирование операционных заготовок // Материалы 3-й Междунар. науч.-практ. конф. „Современное машиностроение. Наука и образование“. СПб: Изд-во Политехн. ун-та, 2013. С. 577—584.
- Kulikov D., Yablochnikov E., Vostropyatov A., Arnst A. Method of automated design of operating the workpieces in a CAD system environment // IEEE 15th Intern. Conf. on Industrial Informatics (INDIN). 2017. P. 96—102. DOI: 10.1109/INDIN.2017.8104753.
- Pompeev K. P., Pleshkov A. A., Borbotko V. A. Interactive Synthesis of Technological Dimensional Schemes // Lecture Notes in Mechanical Engineering. 2021. P. 122—135.
- Помпеев К. П. Размерно-точностной анализ при автоматизированном проектировании надежных технологий // Материалы 3-й Междунар. науч.-практ. конф. „Современное машиностроение. Наука и образование“. СПб: Изд-во Политехн. ун-та, 2013. С. 600—609.