DOI 10.17586/0021-3454-2023-66-2-125-130
УДК 62-523
ПРИМЕНЕНИЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ЛОКАЛИЗАЦИИ ОТКАЗОВ ДАТЧИКОВ КВАДРОКОПТЕРА
Университет ИТМО, факультет систем управления и робототехники;
Маргун А. А.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; Институт проблем машиностроения РАН, Санкт-Петербург, 199178, Российская Федерация; доцент; научный сотрудник
Пыркин А. А.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; профессор, декан факультета
Читать статью полностью
Аннотация. Рассматривается задача локализации отказов датчиков (акселерометра и гироскопа) беспилотного летательного аппарата типа „квадрокоптер“. Разработан алгоритм, обеспечивающий возможность детектирования и классификации отказов датчиков квадрокоптера с помощью методов машинного обучения. Для решения задачи использованы следующие методы машинного обучения: логистическая регрессия, метод случайного леса, LASSO и гребневая регрессии, а также эластичная сеть. Экспериментальные результаты, полученные в ходе компьютерного моделирования, подтверждают работоспособность предложенного алгоритма. Проведен сравнительный анализ используемых методов машинного обучения.
Ключевые слова: локализация отказов, квадрокоптер, БПЛА, логистическая регрессия, метод случайного леса, LASSO-регрессия, гребневая регрессия, эластичная сеть, акселерометр, гироскоп
Список литературы:
Список литературы:
- Козлов Д. С., Тюменцев Ю. В. Нейросетевые методы обнаружения отказов датчиков и приводов летательного аппарата // Труды МАИ. 2012. Вып. 52.
- Lee D., Burg T., Dawson D., Shu D., Xian B., and Tatlicioglu E. Robust tracking control of an underactuated quadrotor aerial-robot based on a parametric uncertain model // IEEE Intern. Conf. on Systems, Man and Cybernetics (SMC 2009). 2009. P. 3187—3192.
- Пыркин А. А., Мальцева Т. А., Лабадин Д. В., Суров М. О., Бобцов А. А. Синтез системы управления квадрокоптером с использованием упрощенной математической модели // Изв. вузов. Приборостроение. 2013. Т. 56, № 4. С. 47—51.
- Patan K. Artificial neural networks for the modeling and fault diagnosis of technical processes // Lecture Notes in Control and Information Sciences. Vol. 377. Berlin: Springer-Verlag, 2008. 206 p.
- Blanke M. et al. Diagnosis and fault-tolerant control. Berlin: Springer-Verlag, 2006. 672 p.
- Sobhani-Tehrani E., Khorasani K. Fault diagnosis of nonlinear systems using a hybrid approach // Lecture Notes in Control and Information Sciences. Vol. 383. NY: Springer-Verlag, 2009. 265 p.
- Шаханов Н. И., Варфоломеев И. А., Юдина О. В., Ершов Е. В. Прогнозирование аномалий в работе натяжных устройств агрегата полимерных покрытий металла в условиях малого количества отказов // Программные продукты и среды. 2018. № 1(36). С. 212—217. DOI:10.15827/0236-235X.121.212-217.
- Mian A. A., and Wang D. B. Dynamic modeling and nonlinear control strategy for an underactuated quad rotor rotorcraft // Journal of Zhejiang University Science A. 2008. Vol. 9, N 4. Р. 539—545.
- Min B. C., Cho C. H., Choi K. M. & Kim D. H. Development of a micro quad-rotor UAV for monitoring an Indoor environment // Part of the Lecture Notes in Computer Science book series. Vol. 5744. Advances in Robotics. P. 262—271.
- Tayebi A. and McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft // IEEE Transactions on Control Systems Technology. 2006. Vol. 14, N 3. Р. 562—571.
- Жерон О. Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: концепции, инструменты и техники для создания интеллектуальных схем. М.: Вильямс, 2018. 187—189 с.
- Chen J. and Patton R. J. Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, 1999. 356 p.
- Wei W. DC Motor Parameter Identification Using Speed Step Responses // Proc. of the 2010 American Control Conf. 2010. P. 1937—1941.
- Мельник М. Основы прикладной статистики. М.: Энергоатомиздат, 1983. 416 с.