DOI 10.17586/0021-3454-2017-60-12-1177-1183
UDC 004.627
THE CONDITION FOR OBTAINING A CONSTANT REFLECTION COEFFICIENT FROM SPHERICAL SURFACES OF GREAT CURVATURE
ITMO University, Saint Petersburg, 197101, Russian Federation; student
L. A. Gubanova
ITMO University, 197101, Saint-Petersburg, Russian federation; Professor
V. B. Nguyen
ITMO University, Department of Optical Information Technologies and Materials; Post-Graduate Student
Read the full article
Abstract. A method is proposed to increase the size of enlightenment area defined as the ratio of the radius for the optical element surface, where the reflection is less than a certain value, to the element radius. The increase is achieved due to the use of a circular diaphragm, located between the evaporator and the substrate, which shields a part of the evaporated molecular flow and redistributes it over a specified por-tion on surface of the optical element. It is shown that the size of the enlightenment area increases by 17% when a single-layer antireflection coating with refractive index ni = 1,35 is formed on the surface of large-curvature optical element (radius R = 10 mm) made of a material with the refractive index nm = 1,52. Analysis of factors influencing the size of the enlightenment area is carried out for the case when a circular diaphragm is used, and distribution of the reflection coefficient of single-layer antireflection coating over the surface of large-curvature optical element is demonstrated.
Keywords: anti-reflective coating, area of enlightenment, large-curvature optical detail, diaphragm
References:
References:
- Gubanova L.A., Khoang Long Tkhan', Do Tay Tan, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, no. 2(15), pp. 234–240. (in Russ.)
- Gubanova L.A., Khoang T.L. Journal of Instrument Engineering, 2016, no. 10(59), pp. 860–866. (in Russ.)
- Gubanova L.A. Gradientnye interferentsionnye sistemy (Gradient Interferential Systems), Doctor’s thesis, St. Petersburg, 2008, 243 р. (in Russ.)
- Gubanova L.A., Putilin E.S. Journal of Optical Technology, 2008, no. 4(75), pp. 278–281.
- Dmitrenko V.A. Tekhnologiya polucheniya tonkoplenochnykh pokrytiy s peremennym otrazheniem (Technology of Receiving Thin-Film Coverings with Variable Reflection), Candidate’s thesis, St. Petersburg, 2003, 153 р. (in Russ.)
- Tomofuji T., Okada N., Hiraki S., Murakami A., Nagatsuka J. Optical Interference Coatings, OSA Technical Digest Series, 2001, Art. MD2.
- Putilin E.S. Gubanova L.A. Opticheskie pokrytiya (Optical Coating), St. Petersburg, 2016, 268 р. (in Russ.)
- Baumeister P.W. Optical Coating Technology, SPIE Press monograph, 2004, 840 p.
- Kuzin A.A., Zablotskiy A.V., Baturin A.S., Lapshin D.A., Melent'ev P.N., Balykin V.I. Nanosistemi, Nanomateriali, Nanotehnologii, 2009, no. 1(7), pp. 163–168. (in Russ.)
- Petukhov V.Yu., Gumarov G.G. Ionno-luchevye metody polucheniya tonkikh plenok (Ion-Beam Methods of Receiving Thin Films), Kazan', 2010, 87 р. (in Russ.)
- Borisenko V.E., Vorob'eva A.I. Nanoelektronika (Nanoelectronics), Minsk, 2003, Part 2, 77 р. (in Russ.)
- Macleod H.A. Thin-Film Optical Filters, Boca Raton, FL, CRC Press, 2010, 800 p.
- Herzig H.P. Micro-Optics: Elements, Systems and Applications, CRC Press, 1997, 600 р.
- Holland L. Vacuum Deposition of Thin-Films, Chapman and Hall, London, 1966.
- Gubanova L.A. Journal of Optical Technology, 2008, no. 4(75), pp. 87–91. (in Russ.)