ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2021-64-4-255-263

UDC 681.51

FAULT IDENTIFICATION BASED ON SLIDING MODE OBSERVERS WITH RELAXED EXISTENCE CONDITIONS

A. N. Zhirabok
Far Eastern Federal University, Department of Automation and Control Processes; Professor


A. V. Zuev
Institute of Marine Technology Problems of the RAS, Far Eastern Branch;


V. V. Filaretov
Institute of Automation and Control Processes of the RAS, Far Eastern Branch, Robotic System Laboratory;


A. E. Shumsky
Far Eastern Federal University, Department of management;


Read the full article 

Abstract. The problem of fault identification in technical systems described by linear differential equations under disturbances is considered. To solve the problem, sliding mode observers are used. The proposed approach is based on a reduced-order model of the original system selectively sensitive to faults and disturbances. Instead of the original system, the sliding mode observer is constructed based on the reduced-order model. The main purpose of introducing such a model is to weaken the conditions for the existence of sliding observers in comparison with the known works; another purpose is to decrease in the dimension of the constructed sliding observers. The conditions relaxation is achieved since the reduced-order model may not have the properties of the original system, which prevent the possibility of constructing a sliding observer for it. The stated theoretical considerations are illustrated by an example.
Keywords: technical systems, faults, identification, observers, sliding modes

References:
  1. Mironovskiy L.A. Funktsional'noye diagnostirovaniye dinamicheskikh system (Functional Diagnostics of Dynamic Systems), Moscow, St. Petersburg, 1998. (in Russ.)
  2. Shumsky A.E., Zhirabok A.N. Metody diagnostirovaniya i otkazoustoychivogo upravleniya dinamicheskimi sistemami (Methods for Diagnosing and Fault-Tolerant Control of Dynamic Systems), Vladivostok, 2018, 173 р. (in Russ.)
  3. Utkin V.I. Skol'zyashchiye rezhimy i ikh primeneniye v sistemakh s peremennoy strukturoy (Sliding Modes and Their Application in Variable Structure Systems), Moscow, 1974. (in Russ.)
  4. Edwards C., Spurgeon S. Intern. J. Control, 1994, vol. 59, рр. 1211–1229.
  5. Floquet T., Barbot J., Perruquetti W., Djemai M. Intern. J. Control, 2004, vol. 77, рр. 622–629.
  6. Zhirabok A.N., Shumsky A.E., Zuev A.V. Automation and Remote Control, 2020, no. 2, pp. 211–225.
  7. Yan X., Edwards C. Automatica, 2007, vol. 43, рр. 1605–1614.
  8. He J., Zhang C. Math. Problems in Eng., 2012, vol. 2012, ID 451843, рр. 1–22.
  9. Alwi H., Edwards C. Automatica, 2008, vol. 44, рр. 1859–1866.
  10. Chandra K., Alwi H., Edwards C. Proc. of 9th IFAC Symp. Safeprocess, Paris, France, 2015, рр. 374–379.
  11. Zhang K., Jiang B., Yan X., Mao Z. ISA Transactions, 2016, vol. 63, рр. 49–59.
  12. Floquet T., Edwards C., Spurgeon S. Intern. J. Adapt. Contr. and Signal Proc., 2017, vol. 21, рр. 638–656.
  13. Fridman L., Levant A., Davila J. Intern. J. Syst. Sci., 2007, vol. 38, рр. 773–791.
  14. Tan С., Edwards С. Proc. of American Contr. Conf., St. Louis, USA, 2009, рр. 3411–3416.
  15. Alwi H., Edwards C., Tan С. Automatica, 2009, vol. 45, рр. 1679–1685.
  16. Rios H., Efimov D., Davila J., Raissi T., Fridman L., Zolghadri A. Intern. J. Adapt. Contr. and Signal Proc., 2014, vol. 28, рр. 1372–1397.
  17. Hmidi R., Brahim A., Hmida F., Sellami A. Intern. J. Contr., Autom. and Syst., 2020, vol. 18, рр. 1–14.
  18. Wang X., Tan C., Zhou D. Automatica, 2017, vol. 79, рр. 290–295.
  19. Zhirabok A.N., Shumsky A.E., Pavlov S.V. Automation and Remote Control, 2017, no. 7, pp. 1173–1188.