ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-5-307-322

UDC 004.052.32+681.518.5

TERNARY MODULAR CODES WITH SUMMATION FOR THE SYNTHESIS OF DIGITAL SELF-TESTING DEVICES

D. V. Ephanov
PSTU; Department of Automation and Telemechanics on the Railways


Read the full article 

Abstract. Ternary summation codes with simple construction rules, suitable for the digital self-checking circuits synthesis operating in ternary logic and able of detecting any non-compositional errors in information vectors (when the number of characters of each type is preserved), are considered. Rules for constructing the ternary sum codes, similar in its properties to the Berger binary code, are given. Two modifications of the ternary sum code are described – sum codes in the residues modulo μ=3 and μ=9 ring. Several characteristics of error detection by the codes are described. It is shown that the proportion of errors of multiplicity d, undetectable by binary summation codes, of the total number of errors of the given multiplicity, is a constant value independent of the information vector length.
Keywords: fault-tolerant and self-testing digital devices and systems, noise-resistant and noise-proof coding, ternary codes with summation, error detection in information vectors, undetectable error

References:
  1. Gavrilov M.A., Ostianu V.M., Potekhin A.I. Itogi nauki i tekhniki. Seriya „Teoriya veroyatnostey. Matematicheskaya statistika. Teoreticheskaya kibernetika“ (Results of Science and Technology. Series „Probability Theory. Math Statistics. Theoretical Cybernetics“), 1969, 1970, рр. 7–104. (in Russ.)
  2. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)
  3. Drozd A.V., Kharchenko V.S., Antoshchuk S.G., Drozd Yu.V., Drozd M.A., Sulima Yu.Yu. Rabocheye diagnostirovaniye bezopasnykh informatsionno-upravlyayushchikh sistem (Working Diagnostics of Safe Information and Control Systems), Khar’kov, 2012, 614 р. (in Russ.)
  4. Kharchenko V., Kondratenko Yu., Kacprzyk J. Green IT Engineering: Concepts, Models, Complex Systems Architectures, Springer Book series "Studies in Systems, Decision and Control", 2017, vol. 74, 305 p., DOI: 10.1007/978-3-319-44162-7.
  5. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006, 720 p.
  6. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking, Dordrecht: Springer Science+Business Media B.V., 2008, 184 p.
  7. Sagalovich Yu.L. Vvedeniye v algebraicheskiye kody (Introduction to Algebraic Codes) Moscow, 2010, 302 р. (in Russ.)
  8. Sapozhnikov V.V., Sapozhnikov Vl.V., Khristov Kh.A., Gavzov D.V. Metody postroyeniya bezopasnykh mikroelektronnykh sistem zheleznodorozhnoy avtomatiki (Methods of Construction of Safe Microelectronic Systems of Railway Automation), Moscow, 1995, 272 р. (in Russ.)
  9. Hahanov V. Cyber Physical Computing for IoT-driven Services, NY, Springer International Publishing AG, 2018, 279 p.
  10. Kosky P., Balmer R.T., Keat W.D., Wise G. Exploring Engineering: An Introduction to Engineering and Design, Academic Press, 2020, 656 p., https://doi.org/10.1016/C2017-0-01871-2.
  11. Zhuo Y., Li X.-L., Sun Y.-B., Li X.-J., Shi Y.-L., Chen S.-M., Hu S.-J., Guo A. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 31 Oct.–3 Nov. 2018, Qingdao, China, DOI: 10.1109/ICSICT.2018.8565797.
  12. Yoon J.-S., Lee S., Lee J., Jeong J., Yun H., Baek R.-H. IEEE Transactions on Electron Devices, 2020, no. 7(67), pp. 2732–2737, DOI: 10.1109/TED.2020.2995340.
  13. Kumar O., Kaur M. International Journal of VLSI Design & Communication Systems, 2010, no. 4(1), pp. 240–249, DOI: 10.5121/vlsic.2010.1403.
  14. Cambou B., Flikkema P.G., Palmer J., Telesca D., Philabaum C. Cryptography, 2018, no. 1(2), pp. 1–16, DOI: 10.3390/cryptography2010006.
  15. Wu J. Proceedings of 19th International Symposium on Multiple-Valued Logic, 29–31 May 1989, Guangzhou, China, pp. 94–99, DOI: 10.1109/ISMVL.1989.37766.
  16. Brusentsov N.P., Maslov S.P., Ramil' Al'vares Kh. Mikrokomp'yuternaya sistema obucheniya „Nastavnik“ (Microcomputer Training System "Mentor"), Moscow, 1990, 223 р. (in Russ.)
  17. Connely J. Ternary Computing Testbed 3-Trit Computer Architecture, California Polytechnic State University of San Luis Obispo, August 29th, 2008, 184 p.
  18. Kim S., Lim T., Kang S. 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), 22–25 January 2018, Jeju, South Korea, pp. 476–481, DOI: 10.1109/ASPDAC.2018.8297369.
  19. Gulliver T.A., Ostergard P.R.J. IEEE Transactions on Information Theory, 1997, no. 4(43), pp. 1377–1381, DOI: 10.1109/18.605613.
  20. Bitouze N., Graell i Amat A., Rosnes E. IEEE Transactions on Information Theory, 2010, no. 11(56), pp. 5715–5729, DOI: 10.1109/TIT.2010.2069211.
  21. Laaksonen A., Östergård P.R.J. Lecture Notes in Computer Science 10495, Springer: Coding Theory and Applications, 5th International Castle Meeting, ICMCTA 2017, Vihula, Estonia, August 28–31, 2017, pp. 228–237.
  22. Berezyuk N.T., Andrushchenko A.G., Moshchitskiy S.S., Glushkov V.I., Benesha M.M., Gavrilov V.A. Kodirovaniye informatsii (dvoichnyye kody) (Information Coding (Binary Codes)), Khar'kov, 1978, 252 р. (in Russ.)
  23. Svanström M. IEEE Transactions on Information Theory, 1997, vol. 43, pp. 1630–1632.
  24. Svanström M., Östergård P.R.J., Bogdanova G.T. IEEE Transactions on Information Theory, 2002, vol. 48, pp. 101–111.
  25. Efanov D.V. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES), 2020, no. 1, pp. 119–125, DOI: 10.31114/2078-7707-2020-1-119-125. (in Russ.)
  26. Efanov D.V. Control sciences, 2020, no. 4, pp. 63–71, DOI: 10.25728/pu.2020.4.6. (in Russ.)
  27. Efanov D. Proceedings of 18th IEEE East-West Design & Test Symposium (EWDTS’2020), Varna, Bulgaria, September 4–7, 2020, pp. 92–99, DOI: 10.1109/EWDTS50664.2020.9225033.
  28. Efanov D.V. Journal of Instrument Engineering, 2020, no. 5(63), pp. 391–404, DOI: 10.17586/0021-3454-2020-63-5-391-404.
  29. Efanov D. Proceedings of 18th IEEE East-West Design & Test Symposium (EWDTS’2020), Varna, Bulgaria, September 4–7, 2020, pp. 40–46, DOI: 10.1109/EWDTS50664.2020.9224826.
  30. Pospelov D.A. Logicheskiye metody analiza i sinteza skhem (Logical Methods of Analysis and Synthesis of Circuits), Moscow, 1974, 368 р. (in Russ.)
  31. Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 2010, no. 6, pp. 1117–1123.
  32. Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2015, no. 10, pp. 1834–1848.
  33. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnicheskogo diagnostirovaniya. T. 1. Klassicheskiye kody Bergera i ikh modifikatsii (Summed Codes for Technical Diagnostic Systems. Vol. 1. Classical Berger Codes and Their Modifications), Moscow, 2020, 383 р. (in Russ.).
  34. Efanov D.V. Information Technologies, 2019, no. 7(25), pp. 426–434, DOI: 10.17587/it.25.426-434. (in Russ.)
  35. Efanov D.V. Proceedings of 17th IEEE East-West Design & Test Symposium (EWDTS’2019), Batumi, Georgia, September 13–16, 2019, pp. 315–319, DOI: 10.1109/EWDTS.2019.8884414.
  36. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnicheskogo diagnostirovaniya. T. 2. Vzveshennyye kody s summirovaniyem (Summed Codes for Technical Diagnostic Systems. Vol. 2. Weighted Codes with Summation), Moscow, 2021, 455 р. (in Russ.)