ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-7-492-499

UDC 681.5.015

IDENTIFICATION OF NON-STATIONARY PARAMETERS OF A LINEAR REGRESSION MODEL UNDER ADDITIVE INFLUENCE OF THE UNMEASURABLE SINUSOIDAL DISTURBANCE

A. A. Bobtsov
ITMO University, Saint Petersburg, 197101, Russian Federation; Head of the School of Computer Technologies and Control, Professor at the Faculty of Control Systems and Robotics, Head of the Adaptive and Nonlinear Control Systems Lab


A. V. Kaplin
ITMO University, Faculty of Control Systems and Robotics;


N. A. Nikolaev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor


O. V. Oskina
ITMO University, Saint Petersburg, 197101, Russian Federation; Student, Engineer


Read the full article 

Abstract. In the framework of the deterministic approach, an algorithm for identifying nonstationary parameters for the classical linear regression equation is proposed. When synthesizing the algorithm for estimating non-stationary parameters, it is assumed that the dynamic model of their variation is known and is a linear generator with variable coefficients. An additional complication of the problem of estimating parameters for the linear regression equation is the presence of an additive sinusoidal disturbing effect with unknown constant amplitudes, frequencies, and phases. The resulting algorithm provides an accurate estimation of all unknown non-stationary parameters.
Keywords: linear regression equation, parameters estimation, time-varying parameters, sinusoidal disturbance

References:
  1. Ljung L. System Identification, Theory for the User, NJ, PTR Prentice Hall, 1987.
  2. Wang J., Le Vang T., Pyrkin A.A., Kolyubin S.A., Bobtsov A.A. Automation and Remote Control, 2018, no. 12(79), pp. 2159–2168.
  3. Dung Kh.B., Pyrkin A.A., Bobtsov А.А., Vedyakov А.А. Journal of Instrument Engineering, 2021, no. 6(64), pp. 459–468. (in Russ.)
  4. Le V.T., Korotina M.M., Bobtsov A.A., Aranovskiy S.V., Vo Q.D. Мechatronics, Automation, Control, 2019, no. 5(20), pp. 259–265. (in Russ.)
  5. Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nelineynoye i adaptivnoye upravleniye slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg, 2000, 549 р. (in Russ.)
  6. Demidovich B.P. Lektsii po matematicheskoy teorii ustoychivosti (Lectures on the Mathematical Theory of Stability), Moscow, 1967. (in Russ.)
  7. Aranovskii S.V., Bobtsov A.A., Pyrkin A.A. Automation & Remote Control, 2009, no. 11(70), pp. 1862–1870.
  8. Aranovskii S.V., Bobtsov A.A., Kremlev A.S., Luk’yanova G.V. Journal of Computer and Systems Sciences International, 2007, no. 3(46), pp. 371–376.
  9. Korotina M., Romero J.G., Aranovskiy S., Bobtsov A., Ortega R. Systems and Control Letters, 2022, vol. 159, рр. 105079.
  10. Bobtsov A., Yi B., Ortega R., Astolfi A. IEEE Transactions on Automatic Control, 2022. DOI: 10.1109/TAC.2022.3159568.
  11. Ortega R., Bobtsov A., Nikolaev N., Schiffer J., Dochain D. Automatica, 2021, no. 129, pp. 109635.