ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2022-65-9-677-684

UDC 621.396.67

MODEL OF SPATIAL-TEMPORAL SYNTHESIS OF THE COMBINED APERTURE FUNCTION OF SPACED ANTENNA ARRAYS

A. P. Aleoshkin
Mozhaisky Military Space Academy, Department of Aerial-Feeder Transmitting Devices, St. Petersburg; Professor


P. V. Savochkin
A. F. Mozhaisky Military Space Academy, Faculty of Radio-Electronic Systems of Space Complexes;


A. V. Chestnykh
Research Institute of Long-Range Radio Communication, 3rd Scientific-Thematic Center; Head of the Center


S. N. Balakirev
A. F. Mozhaisky Military Space Academy, Faculty of Radio-Electronic Systems of Space Complexes; Adjunct


Read the full article 

Abstract. A technique for narrowing the antenna pattern based on joint spatial-temporal processing of signals received at successive moments of time by spatially separated receiving antenna arrays of a quasi-monostatic decameter early warning radar system is presented. The technique application makes it possible to increase the probability of detecting objects located outside the line of sight against the background of powerful interfering interference caused by both the propagation medium and reflections from the underlying surface. The implementation of the methodology will improve the reliability of determining objects located by decameter radar systems.
Keywords: antenna array, underlying surface, amplitude-phase distribution, spatial-temporal processing, radiation pattern, wave front

References:
  1. Fabrizio D. High Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing, and Practical Applications, 2013.
  2. Akimov V.F., Kalinin Yu.K. Vvedeniye v proyektirovaniye ionosfernykh zagorizontnykh radiolokatorov (Introduction to the Design of Ionospheric Over-the-Horizon Radars), Moscow, 2017, 492 р. (in Russ.)
  3. Akimov V.F., Kalinin Yu.K., Slukin G.P. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2012, no. 3, pp. 5–17. (in Russ.)
  4. Alebastrov V.A., Borsoyev V.A., Shustov E.I. Razvitiye otechestvennoy zagorizontnoy radiolokatsii (Development of Domestic Over-the-Horizon Radar), Moscow, 2016, 248 р., ISBN 978-5-9908744-8-0. (in Russ.)
  5. Ratynskiy M.V. Adaptatsiya i sverkhrazresheniye antennykh reshetok (Adaptation and Superresolution of Antenna Arrays), Moscow, 2003, 197 р. (in Russ.)
  6. Vendik O.G., Kalinin S.A., and Kozlov D.S. Technical Physics, 2013, no. 10(83), pp. 1507–1511.
  7. Aleshkin A.P., Vladimirov V.V., Savochkin P.V. Proceedings of the Mozhaisky Military Space Academy, 2019, no. 671, pp. 91–97. (in Russ.)
  8. Chistyakov V.A., Kuprits V.Yu. Reshetnevskiye chteniya (Reshetnev Readings), Tomsk State University of Control Systems and Radioelectronics, 2016, vol. 1, рр. 310–312. (in Russ.)
  9. Aleshkin A., Balakirev S., Nevzorov V., Savochkin P. Informatics and Automation, 2021, no. 1(20), pp. 68–93 (in Russ.)
  10. 1Skolnik M. Radar Handbook, The McGraw-Hill Companies, 2008, 1351 p.
  11. Korostelev A.A., Klyuev N.F., Melnik Yu.A., Veretyagin A.A., Gubin V.A., Dulevich V.E., Zinoviev Yu.S., Petrov A.V. Teoreticheskiye osnovy radiolokatsii (Theoretical Foundations of Radar), Moscow, 1978, 608 р. (in Russ.)
  12. Shirman Ya.D., Golikov V.N., Busygin I.N., Kostin G.A., Manzhos V.N., Minervin N.N., Naydenov B.V., Polyakov V.I., Chelpanov A.S. Teoreticheskiye osnovy radiolokatsii (Theoretical Foundations of Radar), Moscow, 1970, 560 р. (in Russ.)
  13. Porsev V.I., Gelesev A.I., Krasko A.G. Bulletin of the Concern VKO "Almaz-Antey", 2019, no. 4, pp. 24–34. (in Russ.)
  14. Dmitriev D. D., Kartsan I. N. Reshetnevskiye chteniya (Reshetnev Readings), Tomsk State University of Control Systems and Radioelectronics, 2016, vol. 1, рр. 263–265. (in Russ.)
  15. Lagovskiy B.A. Antenny, 2013, no. 6(193), pp. 9–16. (in Russ.)