ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2017-60-6-487-494

UDC 681.5

FAST ESTIMATION OF CHAOTIC SIGNAL GENERATOR PARAMETERS

A. A. Bobtsov
ITMO University, Saint Petersburg, 197101, Russian Federation; Head of the School of Computer Technologies and Control, Professor at the Faculty of Control Systems and Robotics, Head of the Adaptive and Nonlinear Control Systems Lab


O. I. Borisov
ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate,engineer


V. S. Gromov
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


A. A. Pyrkin
ITMO University, Saint Petersburg, 197101, Russian Federation; Full Professor, Dean


Read the full article 

Abstract. The problem of parameter estimation for Duffing-like chaotic signal is addressed. A new method with performance enhancement is proposed. Fast estimation of parameters is achieved with introduction of additional filtered linear regression models for each parameter of the signal. Results of simulation are presented, comparison with the gradient method is carried out. Various applications of the proposed method, such as double well and pendulum system, electrical circuits with specific parameters, and chaotic types transmitting systems are considered. The short time of parameters estimation allows for using the proposed method for estimating switching parameters in chaotic Duffing-like systems.
Keywords: chaotic systems, nonlinear systems, Duffing oscillator, parameter estimation

References:
  1. Zapateiro M., Vidal Y., Acho L. Communications in Nonlinear Science and Numerical Simulation, 2014, no. 4(19), рр.991–1003. DOI: 10.1016/j.cnsns.2013.07.029.
  2. Fradkov A., Nijmeijer H., Markov A.Intern. J. of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, no. 12(10), рр.2807–2813.
  3. Bobtsov A.A., Efimov D.V., Pyrkin A.A.Intern. J. of Adaptive Control and Signal Processing, 2011, no. 1(25), рр.33–47. DOI: 10.1002/acs.1190.
  4. Huijberts H., Nijmeijer H., Willems R. IEEE Transact. on Circuits and Systems I: Fundamental Theory and Applications, 2000, no. 6(47), рр.800–808. DOI: 10.1109/81.852932.
  5. Nikiforov V., Andrievsky B.Proc. of the IEEE Conf. on Decision and Control, 2002, no. 4, рр.4706–4711.
  6. Efimov D.V. Proc. of the IEEE Conf. on Decision and Control, 2004, no. 2, рр.2059–2064.
  7. Efimov D., Fradkov A. Solid Mechanics and its Applications, 2005, no. 122, рр.27–35. DOI: 10.1007/1-4020-3268-4-3.
  8. Nicolis G., Prigogine I.Self-organization in nonequilibrium systems, NY, Wiley, 1977.
  9. Bobtsov A., Pyrkin A., Nikolaev N., Slita O. Intern. J. of Robust and Nonlinear Control, 2009, no. 7(19), рр.829–841. DOI: 10.1002/rnc.1354.
  10. Bobtsov A.A., Pyrkin A.A., Kolyubin S.A. IFAC Proc. Volumes (IFAC-PapersOnline), 2010, no. 14(43), рр.290–295. DOI: 10.3182/20100901-3-IT-2016.00015.
  11. Bobtsov A., Pyrkin A., Nikolaev N., Slita O. Intern. J. of Robust and Nonlinear Control, 2009, no. 9(19), рр.829–841. DOI: 10.1002/rnc.1354.
  12. Bobtsov A., Pyrkin A., Slita O., Nikolaev N.IFAC Proceedings Volumes (IFAC-PapersOnline), 2008, no. 1(1). DOI: 10.3182/20080706-5-KR-1001.0163.
  13. Bobtsov A., Pyrkin A., Aranovskiy S., Nikolaev N., Slita O. 6th EUROMECH Nonlinear Dynamics Conference, 2008.
  14. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. IEEE Transact. on Automatic Control, 2016, vol. 2016, рр. 6971–6976. doi: 10.1109/TAC.2016.2614889.
  15. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. IFAC-PapersOnLine, 2016, no. 13(49), рр.99–104. DOI: 10.1016/j.ifacol.2016.07.934.