DOI 10.17586/0021-3454-2024-67-3-220-229
UDC 534.1
MULTISTABLE DYNAMICS OF A CONTROL SYSTEM WITH UNIPOLAR PULSE-WIDTH MODULATION
South-West State University, Department of Computer Science and Engineering, Kursk; Professor
A. Z. Abdirasulov
Osh State University, IT Academy; Director
U. A. Sopuev
Osh State University, Faculty of Mathematics and Information Technology ; Dean
E. A. Kolomiets
Southwest State University, Department of Computer Science, International Scientific Laboratory for Dynamics of Non-Smooth Systems; Senior Lecturer
Read the full article
Reference for citation: Zhusubaliyev Zh. Т., Abdirasulov А. Z., Sopuev U. А., Kolomiets Е. А. Multistable dynamics of a control system with unipolar pulse-width modulation. Journal of Instrument Engineering. 2024. Vol. 67, N 3. P. 220—229 (in Russian). DOI: 10.17586/0021-3454-2024-67-3-220-229.
Abstract. The dynamics of a non-smooth mapping with a large number of switching manifolds, which describes the behavior of a unipolar pulse-width control system for the energy supply of a heating installation (furnace) for growing sapphire single crystals, is studied. Such a mapping is shown to demonstrate a special type of multistability, when several nested attractive closed invariant curves corresponding to stable two-frequency oscillations coexist in the phase space of the dynamic system. Results of the research are important for creating new methods of predicting, detecting, and suppressing irregular oscillations and catastrophic phenomena that arise when parameters vary and are exposed to interference, as well as for designing pulsed automatic control systems with specified dynamic properties and predictable dynamics.
Abstract. The dynamics of a non-smooth mapping with a large number of switching manifolds, which describes the behavior of a unipolar pulse-width control system for the energy supply of a heating installation (furnace) for growing sapphire single crystals, is studied. Such a mapping is shown to demonstrate a special type of multistability, when several nested attractive closed invariant curves corresponding to stable two-frequency oscillations coexist in the phase space of the dynamic system. Results of the research are important for creating new methods of predicting, detecting, and suppressing irregular oscillations and catastrophic phenomena that arise when parameters vary and are exposed to interference, as well as for designing pulsed automatic control systems with specified dynamic properties and predictable dynamics.
Keywords: multistability, border collision bifurcations, non-smooth continuous mapping, quasi-periodic saddle-node bifurcation, closed invariant curve, two-frequency oscillations
Acknowledgement: the work was supported by the Ministry of Science and Higher Education of the Russian Federation, the program of strategic academic leadership “Priority-2030”, grants No. 1.71.23 P, 1.7.21/S-2, and Osh State University, grant No. 14-22.
References:
Acknowledgement: the work was supported by the Ministry of Science and Higher Education of the Russian Federation, the program of strategic academic leadership “Priority-2030”, grants No. 1.71.23 P, 1.7.21/S-2, and Osh State University, grant No. 14-22.
References:
- Feudel U., Grebogi C., Hunt B.R., Yorke J.A. Phys. Rev. E, 1996, vol. 54, рр. 71–81.
- Feudel U. Intern. J. Bifurcation and Chaos, 2008, vol. 18, рр. 1607–1626.
- Feudel U., Pisarchik A., Showalter K. Chaos, 2018, vol. 28, рр. 033501.
- Zhusubaliyev Zh. T., Mosekilde E., Yahochkina O.O. Intern. J. Bifurcation and Chaos, 2011, vol. 21, рр. 2343–2356.
- Zhusubaliyev Zh.T., Mosekilde E., Pavlova E.V. IEEE Trans. on Industrial Informatics, 2013, vol. 9, рр. 1936–1946.
- Zhusubaliyev Zh. T., Mosekilde E. Math. Comput. Simul., 2015, vol. 109, рр. 32–45.
- Avrutim V., Zhusubaliyev Zh.T. Intern. J. Bifurcation and Chaos, 2019, no. 7(29), pp. 193001721.
- Zhusubaliyev Zh.T., Avrutin V., Gardini L., Sushko I. Chaos, 2022, vol. 32, рр. 043101.
- Feigin M.I. PMM J. Appl. Math. Mech., 1970, vol. 34, рр. 861–869.
- Nusse H.E., Yorke J.A. Physica D, 1992, vol. 57, рр. 39–57.
- Banerjee S., Verghese G.C., eds., Nonlinear Phenomena in Power Electronics, IEEE Press, NY, 2001, 645 p.
- Zhusubaliyev Zh.T., Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems, World Scientific, 2003, 363 p.
- Di Bernardo M., Budd C.J., Champneys A.R., Kowalczyk P. Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer, 2008, 483 p.
- Zhusubaliyev Zh.T., Rubanov V.G., Gol’tsov Yu.A., Yanochkina O.O., Polyakov S.A. Belgorod State University Scientific Bulletin Economics. Information Technologies, 2017, no. 23(272), pp. 113–122. (in Russ.)
- Leonov G.A., Kuznetsov N.V. Intern. J. Bifurcation and Chaos, 2013, no. 1(23), pp. 1330002.
- Dudkowski D., Jafari S., Kapitaniak T., Kuznetsov N.V., Leonov G.A., Prasad A. Physics Reports, 2016, vol. 637, рр. 1–50.
- Kuznetsov N.V. Journal of Computer and Systems Sciences International, 2020, no. 5(59), pp. 647–668.
- Zhusubaliyev Zh.T., Mosekilde E., Churilov A.N., Medvedev A. The European Physical Journal. Special Topics, 2015, no. 8(224), pp. 1519–1539.
- Zhusubaliyev Zh.T., Mosekilde E., Rubanov V.G., Nabokov R.A. Physica D, 2015, vol. 306, рр. 6–15.
- Parker T.S., Chua L.O. Practical Numerical Algorithms for Chaotic Systems, NY, Springer-Verlag, 1989, 348 p.
- Nusse H.E., Yorke J.A. Physica D, 1989, no. 1-2(36), pp. 137–156.
- You Z., Kostelich E.J., Yorke J.A. Intern. J. Bifurcation and Chaos, 1991, no. 03 (01), pp. 605–623.
- England J.P., Krauskopf B., Osinga H.M. SIAM J. Appl. Dyn. Syst., 2004, no. 2(3), pp. 161–190.
- Krauskopf B., Osinga H.M., Doedel E.J., Henderson M.E., Guckenheimer J., Vladimirsky A., Dellnitz M., Junge O. Intern. J. Bifurcation and Chaos, 2005, no. 03(15), pp. 763–791.
- Fundinger D. J. Nonlinear Sci., 2008, vol. 18, рр. 391–413.
- Li H., Fan Y., Zhang J. Intern. J. Bifurcation and Chaos, 2012, no. 01(22), pp. 1250018.
- Guckenheimer J., Krauskopf B., Osinga H.M., Sandstede B. Chaos, 2015, no. 9(25), pp. 097604.
- Yue X.-L., Xu Y., Xu W., Sun J.-Q. Intern. J. Bifurcation and Chaos, 2019, no. 8(29), pp. 1950105.
- Zhusubaliyev Zh.T., Kuzmina D.S., Yanochkina O.О. Proceedings of the Soutwest State University, 2020, no. 3(24), pp. 166–182. (in Russ.)
- Kuznetsov Yu.A., Meijer H.G.E. Numerical Bifurcation Analysis of Maps: from Theory to Software, Cambridge University Press, 2019, 753 р.